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Preface
The words fire and flame have beencurses for millions of people throughout
the ages all across the Globe. Those who have lost their homes, belongings, and
relatives by fire cannot forget the these events for the rest of their lives. In many
cases, fires are silent killers, killing people during sleep. With tremendous efforts
by firemen and firefighters, fires may extinguish in time, only leading to realiza-
tion that many unfortunate individuals have lost their lives, or have been
injured, by fire. The most common natural textile materials (namely, cotton,
flax, and jute), wood, and many household materials are cellulosic in nature.
All of them burn quickly, spread rapidly, and release toxic gases. People have
realized this since ancient times, and the flame retardancy concept has been
applied using borax and other flame retardant (FR) materials. With the advent
of synthetic fibers and polymers, this problem was intensified due to their poor
absorbency, caused by hydrophobicity. They also melt easily, and the dripping
of melt drops results in severe injury to the burn victim. The period from 1960
to 1980 saw the development of many of well-established flame retardant mater-
ials. During the last few decades, the knowledge about the toxicity and environ-
mental impact of chemicals has rapidly grown, and people have become more
aware of potential dangers associated with FRs. In February 2003, the Restriction
of Hazardous Substances Directive (RoHS) was adopted by the European
Union. This was followed by banning many FRs, mainly halogen- and halogen-
ated-phosphosphorous FRs by various countries. The researchers put their best
efforts to find eco-friendly substitutes and a large number of research works came
into light. A good number of books on flame retardancy have been published in
the last two decades, but most of them are devoted to specific or limited fields of
flame retardancy. I came across a very large number of research publications on
various chemicals and substrates. Hence, I decided to write a book covering
broader topics. In this book, flame and fire retardancy of textiles and various
nontextile materials (e.g., plastics, resins) are discussed which may help
researchers to find newer FRs for the textile materials or vice-versa.

This book consists of 10 chapters. Chapter 1 discusses the hazards caused by
fire from a historical perspective. From ancient times until the present, many
cities in all parts of the world are ruined by fire; fire hazards are very common in
cities and thousands of people are burned and die every year. Extinguishing fires
is the job of the fireman or firefighter. Most textile materials are flammable and
continue burning, even if they are taken away from fire or flame. Moreover,
people who are rescued from fire die because of severe burns from burned gar-
ments; inhaling toxic gases released by burning; melting and dripping of poly-
mers; and suffocation due to oxygen shortage. Various fire-related aspects, such
as combustion, ignition, charring, and flammability are discussed in this chapter.

Chapter 2 discusses thermal and flammability properties and their variations
among various natural and manmade textiles. Flammability test methods meas-
ure how easily materials ignite, how quickly they burn, and how they react when
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burned. A large number of flammability tests are in use, and may be classified
into five groups: ignition tests (positioning test samples in vertical, horizontal,
and inclined position); reaction to fire tests (how easily fire grows and
spreads); application-based tests, i.e. performance of firefighters’ clothing;
radiant energy tests, i.e., testing on manikins in flash fire scenarios; and scien-
tific assessment of thermal and flammability parameters such as limiting
oxygen index (LOI), which measures minimum % oxygen in air required to ini-
tiate combustion, and is the most simple, effective and popular measure to
express flammability. Various standard methods of flammability tests are dis-
cussed very elaborately.

Chapter 3 describes fibers and polymers that are self- or inherent flame
retardants (IFR). They do not need any further treatment to protect from fire.
Their fire retardancy property is durable and can prevent hazards that are
caused during finishing. Wool is naturally flame retardant, while man-made
fibers (including synthetics) can be made FR by adding FR chemicals during
fiber spinning or by copolymerization. Most important IFR fibers are aramid
fibers and polyvinyl chloride polymers.

In Chapter 4, a variety of flame retardants are described. Flame retardant
finishes are chemicals which are added to combustible materials to render
them resistant to ignition. Various FRs are classified according to characteris-
tics such as chemical structure, and durability. Mineral-, halogen-, phosphor-
ous-, nitrogen-, and silicon-based char-forming intumescent, reactive, and
hybrid organic–inorganic FRs are described and their operating principles are
explained.

Chapter 5 is devoted to the most economic, most popular, and at the same
time most controversial halogen-based FRs. They are widely used in consumer
products because of their low impact on other material properties, and the
low loading levels required to meet the required flame retardancy. However,
halogen-based FRs have raised concerns due to their persistency, their bio-
accumulation on living organisms, and their potential toxic effects on human
health. As a result, most of them are banned or awaiting substitution by more
eco-friendly FRs.

Eco-friendly and versatile, phosphorus-based FRs are described in Chapter 6.
Inorganic phosphorous derivatives, mostly nondurable or semidurable, entails
primarily phosphoric acid and its ammonium salts. Organophosphorous FRs
include aliphatic and aromatic phosphines, phosphine oxides, phosphites, phos-
phates, phosphinites, phosphinates, phosphonate esters, and phosphonium salts;
they promote char formation and act in condensed mode. Nitrogen acts as a syn-
ergist in some cases, and some P-N-Si compounds are popular as FRs. These
compounds are successfully used, both as additives and as reactive flame retard-
ants for a wide variety of polymer-based systems, namely cotton, rayon, wool,
polyester, polyamide, polyacrylic, epoxy resin, polyurethane, and polystyrene.
They have also wide applications in nontextile sectors, such as resin, and plastics.

Chapter 7 is devoted to intumescent FRs (IFRs). Researchers showed that
the sustainable materials obtained from natural resources can char on burning
and form protective layer(s) to make a barrier between substrate and flame/
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burning gases. These intumescent FRs (IFRs) are economic, efficient, and easily
applicable on various substrates such as textile fibers, resins, and foam. The
intumescent behavior resulting from a combination of charring and foaming of
the surface of the burning polymers is being widely developed for fire retar-
dance because it is characterized by a low environmental impact. Research
work in intumescence is very active. New commercial molecules, as well as new
concepts, have appeared.

Chapter 8 examines nanocomposites, The composites are made from two or
more constituent materials;at least one of the phases shows dimensions in the
nanometer range. These are high-performance materials that exhibit unusual
property combinations and unique design possibilities, and are thought of as
the materials of the 21st century. Fire retardant, carbon-based nanomaterials
are made from graphene, carbon nanotubes (CNTs), and carbon black (CB).
Layered aluminosilicates, also popularly described as clays, are one such type
of filler; they are responsible for a revolutionary change in polymer composite
synthesis, as well as for transforming polymer composites into fire retardant
polymer nanocomposites.

Chapter 9 discusses flame retardancy of synthetic fibers. In the absence of
functional groups, synthetic fibers are less prone to charring. Furthermore,
hydrophobicity and melting are the two disadvantages of making synthetic
fibers flame-resistant. To address these problems, back-coating and intumes-
cent FRs are alternative ways to make FR synthetic fibers. The thermally-
stable FRs can be added in melt or solutions of polymer before spinning, or
may be applied as back-coating. Various FRs suitable for synthetic fibers and
their methods of application are discussed in this chapter.

Finally, Chapter 10 explores environmental aspects of FRs. While FRs
could ensure the production of fire safety products, many of them are not safe
to human beings. There are more than 175 different types of FRs in the
market, which contain bromine, chlorine, phosphorus, nitrogen, boron, and
antimony compounds or their combinations of inorganic and organic origins.
Flame retardant products do not easily obtain eco-labels. The introduction of
novel, sustainable, natural-based, intumescent FR systems represents a major
scientific and technological challenge. This is expected to make a breakthrough
in the production of flame-retarded polymer materials that would follow the
principles of eco-designing.

Who will read this book? Students who read portions of this book will gain a
basic understanding of principles and issues related to fire retardancy, the know-
ledge on how FR materials and associated application methods changed with
time and how their performances can be tested in different flaming environments.
Researchers in one application field may find how a FR product used in other
fields can be developed for their own applications. Developers, including quality
assurance professionals, will find a variety of techniques which can fulfill the FR
requirements of their products per specific national requirements that are dictated
by prevailing national laws. Technical managers will find a coherent approach to
prevent loss from burning and improve FR quality of their products. Therefore,
a diverse reading audience should benefit from the contents of this book.
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1 Fire Hazards and
Associated Terminology

1.1 INTRODUCTION

About 100,000 people around the world die in fires each year. Fires account for
~ 1% of the GDP within EU. Human beings have been afraid of fire since they
started making buildings from wood rather than from stone. In fact, firing infer-
nos have been so common throughout history that nearly every major city in the
world has been largely burnt to the ground at some point. Some of these cities
have been burned on multiple occasions. Constantinople burned many times
between 406 and 1204 only to be, like a damaged ants’ or termites’ nest, rebuilt
each time, thereby setting the stage for the next great inferno. During historical
wars, many of these fires were man-made, but most of them were due to natural
calamity combined with poor construction methods, excessive use of flammable
building materials, and/or the human incapability to fight really large blazes.
Some of these fire incidences will be remembered forever because of their size and
their dominant roles in shaping historical events. Which fires are these? The list
of the top ten most destructive, most famous, or most historically significant
non-war-related infernos in history are as follows (Danelek, 2011):

1. Rome (64 AD),
2. London (1212),
3. London (1666),
4. Chicago (1871),
5. Boston (1872),
6. Peshtigo, Wisconsin (1871),
7. San Francisco (1906),
8. Halifax, Nova Scotia (1917),
9. Tokyo, Japan (1923), and

10. Texas City, Texas (1947).

Among common household materials, wood is very fire-prone; it is made of
cellulose, the same component of cotton and many other textile materials.
These textile materials are, therefore, also fire-prone. Recently (2012–2013),
about 800 people were injured in fires in garment and textile factories in
Bangladesh, most of which were unreported, according to the data compiled
by international labor campaigners. The high number of casualties raises
concerns about the slow pace of change in this politically unstable southern
Asian state, where more than 1,130 people died in a garment factory building.
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The building caught fire on November 24, 2012, and collapsed in April 2013.
The tragedy was the worst industrial accident anywhere in the world for
a generation (Burke, 2013).

The material mainly responsible for the development of the fire in 25% of all
dwelling fires, and the item first ignited in 26% of all dwelling fires in 2017–18
was “Textiles, upholstery and furnishings” (The Home Office, 2018). The
former caused 46% of all fire-related fatalities in dwellings. This proportion is
normally higher (64% in 2016–17).

The particular hazard posed by burning textiles, especially those based on
natural cellulosic fibers such as cotton, jute and flax (linen), was recognised
during early civilisations and such salts as alum had been used because they
reduce their ignitability, and thereby confer flame retardancy. A major prob-
lem arises because most of the polymers on which textile materials are based
are organic and thus flammable. In the United Kingdom alone, some 800–900
deaths and roughly 15,000 injuries result from fire each year. Most of the
deaths are caused by inhalation of smoke and toxic combustion gases, with
carbon monoxide being the most common cause, whilethe injuries result from
exposure to the heat that evolves from fires.

The Home Office (UK) has responsibility for fire services in England. The
vast majority of statistics produced by the Home Office are for England, but
some clearly marked, tables are for the United Kingdom and are separated by
national data. In the past, the Department for Communities and Local Govern-
ment (which previously had responsibility for fire services in England) produced
releases and tables for Great Britain and at times the UK.

The annual UK Fire Statistics 2018 (The Home Office, 2018) contains some
of the most comprehensive documents available and provides information that
is perhaps representative of a European country with a population of about
55 million. For every million people in England, there were 6.0 fire-related fatal-
ities in 2017–18.

Smokers’ materials (such as lighters, cigarettes, cigars, or pipe tobacco) were
the source of ignition in 7% of accidental dwelling fires and in 9% of accidental
dwelling fire nonfatal casualties in 2018–19. In contrast, smokers’ materials
were the source of ignition in 20% of fire-related fatalities in accidental dwelling
fires in 2017–18.

The most common cause of death for fire-related fatalities in 2017–18 (where
the cause of death was known) was “overcome by gas or smoke”, given as 30%
(99 fire-related fatalities) of fire-related fatalities. This was lower as a proportion
compared with 2016–17 (38%). This was followed by “burns alone” (24%; 80
fire-related fatalities) and the combination of “burns and overcome by gas and
smoke” (15%; 50 fire-related fatalities) in 2017–18.

Flame retardancy is an important characteristic of textile materials that pro-
tects consumers from unsafe apparel. Firefighters and emergency personnel
require protection from flames. Floor coverings, upholstery, and draperies also
need protection from fire, especially when used in public buildings. The military
and airlines industries have multiple needs with respect to fire-retardancy
(Schindler and Hauser, 2004).
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Horrocks (2011) reviewed the state of the art for the different commercially
available flame retardants (FRs) for textile materials, during the following periods.

1.1.1 1950–1980

The fire safety issue and federal regulations in European countries and in
the United States dictated the development of new, effective flame retardant
chemicals to reduce the fire hazards and meet the product flammability standards.
The first patent on organo-phosphorus FRs for cellulosic textiles (i.e., cotton)
was accepted during this period. Inherently FR synthetic fibers bearing aromatic
structures were also developed during this “golden period” of flame retardant
research.

1.1.2 1980–LATE 1990S

This was a lean period in research on FRs.

1.1.3 2000–ONWARD

Phosphorus-based char-former flame retardant additives were developed during
this period. The efforts were made to find the possibility of replacing bromine
derivatives with other less toxic and efficient products. The outstanding potential
of nanotechnology for conferring flame retardant features to fibers and fabrics
was discovered. The preformed nanoparticle suspensions, single nanoparticles or
nanoparticle assemblies, and hybrid organic–inorganic structures were proved
prospective roles in FRs (Yu et al., 2013).

In 2013, the world consumption of flame retardants was more than
2 million tonnes. The construction sector is the most commercially important
application area, requiring for instance, flame retardants for pipes and cables
made of plastics. In 2008, the United States, Europe and Asia consumed
1.8 million tonnes, worth US$4.20–4.25 billion. According to Ceresana, the
market for flame retardants is increasing due to rising safety standards world-
wide and the increased use of flame retardants. It is expected that the global
flame retardant market will generate US$5.8 billion. In 2010, the Asia–Pacific
region was the largest market for flame retardants, accounting for approximately
41% of global demand, followed by North America and Western Europe
(Ceresana, 2019).

1.2 FIRE HAZARDS IN TEXTILE INDUSTRY

The textile industry produces materials made of various natural and artificial
fibers. It is one of the oldest and most important branches of industry. How-
ever, textile materials themselves are flammable. In addition, the textile industry
deals with numerous flammable materials and chemicals. The chances of catch-
ing fire are very high along the entire textile production chain and easily cause
fires and dust explosions.
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A fire may break out at any place including houses, residential and com-
mercial buildings, restaurants, cinemas, sports stadiums, jungles, industries,
and mills (particularly those like textile mills and industries where raw mater-
ial or finished products are combustible). In the case of a fire, there may be
several reasons related to its initiation and propagation.

Statistics have clearly indicated that textile products have been significantly
involved in fire hazards involving human lives. Such products include clothing
(including oversuits, undergarments, work wear, and suiting), bedsheets, floor
coverings, upholstered textiles in seats, bedding, and home furnishings.
Human beings are always in close contact with these textile materials.

Since textiles made from natural fibers are flammable or combustible, they
can provide a means of initiating fire. Actual fire cases had shown that textile
and clothing were the main items causing injury and death to human lives.

Public concern over the fire-retarding textiles for the protection of human
lives and property appeared in the form of legislation. An early example is
seen in the United States. The Flammable Fabric Act, 1953, was the first
major piece of such legislation.

In the 1970s and 1980s, there were significant discussions on textile flammabil-
ity legislations in the United States and Western Europe. These were directed
atcontrol of fire hazards to lives and other valuables.

In 1988, there were 15,080 textile-implicated fires in the United Kingdom,
and textile-related fires caused 4,000 casualties and 495 deaths. The United
Kingdom upholstery furniture safety regulations were also introduced in 1988
to exercise a control for reducing textile flammability hazards. The legislations
employed in the United Kingdom covers nightwear, upholstered furniture, and
toys, and specify how products are to be tested for safety purposes and for
evaluating performance, labeling for safe use, and the nature of materials
used. An equally important subject, along with the enforcements of legislation
is the standard testing procedure designed for evaluating the degree or level of
flame retardancy offered by the product for general and specific purposes.

A standard testing procedure usually incorporates the overall conditions
that would be experienced by the textile item in an actual fire environment.
Presently, several textile flammability testing procedures are available that can
be used for a variety of textile products under specified application conditions.
These products are apparel, upholstery, building materials, plastic toys, folding
portable cots and, car racing suits.

British standard flammability tests are available for products such as curtain,
carpets, and bedding, but statutory legislation does not exist for the use of these
products in the domestic market.

It is a conventional practice for a retailer to specify a particular test to fulfill
the requirements of safety and protection. The Consumer Protection Act 1975,
the United Kingdom requires that all products sold in the United Kingdom
must be fit for their purpose. In the United States, the Consumer Product
Safety Act, 1972 is designed to protect the public from hazardous products.

The Consumer Safety Commission (CPSC), in conjunction with industry, has
power to produce standards for product testing to protect masses from hazards.
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This commission has recently amended the standard for the flammability of
clothing textiles as originally issued in 1953. This is a voluntary standard for
assessing the flammability risk of clothing textiles in terms of the ease of ignition
and the speed of flame spread. This standard is aimed to reduce danger of injury
and loss of life by introducing on-national-basis methods of testing and rating
the flammability of textile products used for clothing (Uddin, 2019).

In the textile industry, nearly all materials being used are flammable to
some degree. Some fire-prone substances are listed next (HSE, 2019):

• Loose materials, e.g., fabric offcuts or open layers of wadding–low
density fibers burn very easily.

• Deposits of fluff and dust (fly)–dust on light fittings is a particular
risk. Cotton fly is very hazardous when it is on fire.

• Oily fibers, such as contaminated wool or cotton; oil results from the
spinning process.

• Rough, raw edges on rolls or bales–bales tend to burn on the surface
and smoulder underneath–deep-seated smouldering in bales is almost
impossible to put out from the outside.

• High piles of stock, especially if close together, can increase the speed
at which a fire spreads.

• Traditional textile mills, constructed using a high amount of wood
and with the presence of fly, means that a fire can spread rapidly.

• Flammable liquids that ignite easily or oxidizing agents that may
make an existing fire more intense by fueling it with oxygen.

Some suggested precautionary steps to be followed to avoid fire hazards are
listed next (HSE, 2019):

• Good housekeeping–cleaning up fluff and dust regularly, especially
high ledges;

• Keeping offcuts in bins, preferably metal;
• Minimum storage in workrooms;
• Indirect heating in workrooms;
• Restricting smoking areas;
• Controlling heated work areas; and
• Storing raw materials and finished goods systematically with proper

spacing–not randomly on the floor.

Some fire-prone areas in textile production units are discussed next (HSE, 2019).

1.2.1 CARPET MAKING

This involves the manufacture and storage of latex foam and rubber underlay
and foam carpets. These can burn to produce enough smoke to classify the
material as a highly flammable solid.
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• A high level of sprinkler protection is needed where foam-backed carpets
are stored.

• Traditional wool or nylon hessian-backed carpet is not particularly
flammable.

1.2.2 SPINNING

During opening and carding, foreign bodies in fibers and baled raw material
can come into contact with rotating metal parts of machinery and produce
sparks or frictional heat. Natural fibers are more likely than synthetic fibers to
contain foreign bodies.

Opening rags is a vigorous process and it is highly likely that they will con-
tain foreign bodies, such as coins and metal buttons, that may cause a spark.

The spread of fire from opening machinery through ducting can be high;
the spread of fire through the fiber delivery and trash recovery systems is also
a fairly high risk. Automatic fire detection in a ducted system is essential.

Traditional spinning causes deposits of fly, and, if contaminated by oil, can
be particularly flammable

1.2.3 WEAVING

The main hazard is ignition of fly by electrical faults, usually insulation failures
caused by mechanical vibration. Modern looms are less susceptible to vibration.

Effective controls include good housekeeping and good maintenance of
electrical systems and machinery.

1.2.4 FINISHING PROCESSES

These are processes that alter the physical characteristics of the cloth, either by

• Physical means, e.g., raising or milling, or
• Chemical means, e.g., crease resistance.

Processes involving a naked flame, e.g., flame bonding can cause smoldering.
The stenters used for thermal bonding are a common source of fires–smoldering

in the finished reel of material can develop into a fire later. Also, if the material
stops in the stenter, it is important for the heat supply to cut off automatically.
Thermostats can also fail causing overheating.

Gas singeing, i.e., burning of projected fibers from the fabric surface by
open flame may cause fire hazard.

Some causes for explosion are:

• Wool spinning: wool dust can cause explosions. Good housekeeping is
essential and the dust in the carding machines should be controlled.

• Flocking: Ground flock (rather than precision cut) from mainly
cotton, acrylic and nylon fibers, gives a higher risk of explosion. If
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dispersed into the atmosphere, e.g., when cleaning down, it can cause
an explosion and/or fire.

Burn injuries continue to be one of the leading causes of unintentional death and
injury in the United States. Between 2011 and 2015, approximately 486,000 fire or
burn injuries were seen at Emergency Departments. In 2016 alone, there were 3,390
civilian deaths from fires, which includes 2,800 deaths from residential structure fires,
150 deaths from non-residential structure fires 355 from vehicle fires, and 85 from
outside and unclassified fires other than structure or vehicle fires. One civilian fire
death occurs every 2 hours 35 minutes. The lifetime odds of a U.S. resident dying
from exposure to fire, flames or smoke are 1 in 1,498.
The primary causes of burn injury include fire-flame, scalds, contact with hot

object, electrical and chemicals.
(ABA, 2002)

1.2.5 BURN INJURY

A burn is an injury to the skin or other organic tissue primarily caused by
heat radiation, radioactivity, electricity, friction, or contact with chemicals.
Thermal (heat) burns occur when some or all of the cells in the skin or other
tissues are destroyed by:

• Hot liquids (scalds),
• Hot solids (contact burns), or
• Flames (flame burns).

Burns are a global public health problem, accounting for an estimated 180,000
deaths annually. The majority of these occur in low- and middle-income countries
and almost two thirds occur in Africa and Southeast Asia.

In many high-income countries, burn death rates have been decreasing, and
the rate of child deaths from burns is currently over seventimes higher in low-
and middle-income countries than in high-income countries.

Nonfatal burns are a leading cause of morbidity, including prolonged hospital-
ization, disfigurement, and disability, often with resulting stigma and rejection.

• Burns are among the leading causes of disability-adjusted life-years
(DALYs) lost in low- and middle-income countries.

• In 2004, nearly 11 million people worldwide were burned severely
enough to require medical attention.

The burn statistics of some countries are as follows (WHO, 2018):

• In India, over 1,000,000 people are moderately or severely burned
every year.

• Nearly 173,000 Bangladeshi children are moderately or severely burned
every year.
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• In Bangladesh, Colombia, Egypt, and Pakistan, 17% of children with
burns have a temporary disability and 18% have a permanent disability.

• Burns are the second most common injury in rural Nepal, accounting
for 5% of disabilities.

• In 2008, over 410,000 burn injuries occurred in the United States,
with approximately 40,000 requiring hospitalization.

1.3 FIRE

A fire is defined as any combustion that is not under control. The development
of fire can be subdivided into four different phases: ignition, propagation, devel-
opment, and decline. Since the flames are still contained during the first two
phases and the ambient temperatures are changing, the risk of damage can be
relatively limited. The limit of this risk is tied to the duration of these two
phases, which is determined by the geometry and ventilation of the area, and
the amount of contact between the combustible source, the oxygen in the air,
and the ignition. Up to the point when the flashover is reached, the mix of
inflammable gases propagates the flames very quickly. The average temperature
rises (over 1,200°C) and all combustible material burns and the fire increases.
The decline or extinguishing phase begins after the maximum temperature is
reached. The fire is considered extinguished when the ambient temperature
drops around 300°C.

Fire is the rapid oxidation of a material in the exothermic chemical process
of combustion, releasing heat, light, and various reaction products (NWCG,
2009). Slower oxidative processes, such as rusting or digestion, are not included
by this definition.

Fire generates heat because the conversion of the weak double bond in
molecular oxygen, O2 to the stronger bonds in the combustion products carbon
dioxide and water releases energy (418 kJ per 32 g of O2); the bond energies of
the fuel play only a minor role here (Schmidt-Rohr, 2015). At a certain point in
the combustion reaction, called the ignition point, flames are produced. The
flame is the visible portion of the fire. Flames consist primarily of carbon diox-
ide, water vapor, oxygen and nitrogen. If a large quantity of heat is generated,
the gases may become ionized to produce plasma (Helmenstine, 2009). The
color of the flame and the fire’s intensity depend on the substances alight, and
any impurities outside.

Fire is an important process that affects ecological systems around the
globe. The positive effects of fire include stimulating growth and maintaining
various ecological systems.

Fire has several negative effects, such as hazard to life and property, atmos-
pheric pollution, and water contamination. If fire removes protective vegetation,
heavy rainfall may lead to an increase in soil erosion by water (Morris and
Moses, 1987). Also, when vegetation is burned, its nitrogen is released into the
atmosphere, unlike elements such as potassium and phosphorus, which remain
in the ash and are quickly recycled into the soil. This loss of nitrogen caused by
a fire produces a long-term reduction in the fertility of the soil, which only
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slowly recovers as nitrogen is fixed from the atmosphere by lightning and by
leguminous plants such as clover.

Fire has been used by humans in rituals; in agriculture, for clearing land; for
cooking, generating heat and light, signaling, propulsion purposes, smelting,
forging, incineration of waste, and cremation; and as a weapon or mode of
destruction.

1.4 BURNING PROCESS

Fire initiation and propagation in textiles are mainly due to the formation of
various gases and liquids during burning. The flame and heat resistance
of textiles is concerned with the flammability of such materials, i.e., whether
flammable or nonflammable, and the ability of these materials to reduce the
transfer of heat from a high-temperature source, either by direct contact (con-
duction/convection) or via radiation. The required flame and heat resistance
of a textile product dependon its end-uses in particular applications within
a given textiles sector.

The burning process of textiles involves the release of heat, decomposition
of the material, combustion, and propagation of the flame. The decomposition
of the material is explained as the breakdown of the hydrogen bonds that
make up the composition of the fabric. The fabric is broken down into gas-
eous liquid and solid composites, which further fuel the combustion process.

The burning of material is a complex phenomenon. It involves processes
such as heat transferand thermal decomposition. For synthetic fibers, the
thermoplastic behavior adds to the effect. While burning of the cellulosic tex-
tile materials, the combustible vapor is generated, and char is formed.

Carbon and oxygen react to form carbon monoxide (CO); it is an exother-
mic reaction and energy liberated is 26.4 kcal. The char becomes ash in an
afterglow process by conversion of CO to CO2 in the presence of excess
oxygen. This reaction is also an exothermic reaction and the energy involved
is 94.3 kcal, almost four times than that involved in CO formation. Because
ignition, shrinkage, melting, dripping, and afterglow are involved, high energy
and large amounts of heat evolve during burning.

When the textile material is heated, chemical and physical changes occur,
depending on the temperature and chemical composition of the material.
Thermoplastic fibers soften at glass transition temperature (Tg) and subse-
quently melt at melting temperature (Tm). At some higher temperature called
pyrolysis temperature (Tp), both thermoplastic and nonthermoplastic materials
chemically decompose or pyrolyze into lower molecular weight fragments and
continue through the combustion temperature (Tc). For thermoplastic fibers,
Tg and/or Tm are lower than Tp and/or Tc, while for non-thermoplastic fibers,
Tg and/or Tm are higher than Tp and/or Tc.

In case of nonthermoplastic natural fibers, pyrolysis and combustion start
before softening and melting. Thermoplastic synthetic fibers melt and drip away
from the flame before pyrolysis and combustion temperatures are reached.
However, if the melt does not shrink away from the flame front, pyrolysis and
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combustion temperatures are eventually reached and ignition occurs. FR cotton
and inherent FR synthetic fibers (e.g., Nomex, Kevlar, PBI) can offer protection
to the wearer because they do not shrink away from the flame. Thermoplastic
fibers pass the ignition test by shrinking away from the flame. In reality, how-
ever, the wearer is exposed to direct heat and thereby suffers burning by contact
of the body with the molten mass (Tomasino, 1992).

The thermal processes and combustion products of organic products occur
in a progressive and definable cycle as shown in Figure 1.1. When heat is
applied, the temperature of the fiber increases until the pyrolysis temperature
(Tp) is reached. At this temperature the fiber undergoes irreversible chemical
changes, producing nonflammable gases (carbon dioxide, water vapor, and
higher oxides of nitrogen and sulfur), flammable gases (carbon monoxide,
hydrogen and many oxidizable organic molecules), tars (liquid condensates)
and carbonaceous char. As the temperature continues to rise, the tars also
pyrolyze, producing more flammable and nonflammable gases and char. When
combustion temperature (TC) is reached, the flammable gases combine with
oxygen in the process called combustion, which is a series of gas-phase free
radical reactions. These highly exothermic reactions generate large amounts of
heat and light. The generated heat provides additional thermal heat for the
pyrolysis process to continue. More and more flammable gases and conse-
quently, higher and higher amounts of heat are generated causing devastating
effects. In the case of burning of textiles, the speed or rate of heat release is
more important than the amount of generated heat (Schindler and Hauser,
2004). An important factor in combustion is the Limiting Oxygen Index

FIGURE 1.1 Combustion cycle for fibres and polymers.

10 Flame Retardants for Textile Materials



(LOI), which is the percentage of oxygen in the fuel mix needed to support
combustion. The higher this number is, the more difficult the combustion is.

Thermal decomposition precedes combustion and ignition of the material.
Combustion is an exothermic process that requires three components, namely
heat, oxygen, and fuel. When left unchecked, combustion becomes self-catalyzing
and will continue until the oxygen, the fuel supply, or excess heat is depleted.

After combustion, the polymer may degrade without flame, burst into
flame, or change physically by melting, shrinking, or charring. The combus-
tion products may further be decomposed and ignited. In other words, on
heating, a polymer may be liquefied with or without decomposition, be con-
verted into carbon-residues (chars), or release combustible or noncombustible
gases. The thermal decomposition products determine the flammability of
polymers. The role of flame retardants (FRs) is to inhibit the formation of
combustible products and/or to alter the normal distribution of decomposition
products originating from the original material.

1.5 PYROLYSIS

The decomposition of materials due to fire is called pyrolysis or thermolysis.
All textile fibers in their natural form are inherently fire retardants. Almost all
known fibers have a high flash point or melting point. However, when the sur-
rounding temperature reaches the flash point temperature of fibers, they catch
fire. Cellulose such as cotton is solid and has an appreciably low vapor pressure.
They do not burn but decompose into flammable fragments, which generate
heat. This heat further decomposes the cellulose to carry on the decomposition
process. Thermal decomposition of cellulose leads to the formation of products
such as liquids, tar, and solid materials. Bond rupture, bond reformation, vola-
tilization, and many exothermic reactions occur simultaneously.

Pyrolysis is the thermal decomposition of materials at elevated temperat-
ures in an inert atmosphere (IUPAC, 2009). It involves the change of chemical
composition and is irreversible. The word is coined from the Greek-derived
elements pyro (fire) and lysis (separating).

Pyrolysis is most commonly used to the treatment of organic materials. It is
one of the processes involved in charring wood (InnoFireWood’s website,
2019). In general, pyrolysis of organic substances produces volatile products
and leaves a solid residue enriched in carbon char. Extreme pyrolysis, which
leaves mostly carbon as the residue, is called carbonization.

The aforementioned process is used heavily in the chemical industry, for
example, to produce ethylene, many forms of carbon, and other chemicals from
petroleum, coal, and even wood, to produce coke from coal. Inspirational
applications of pyrolysis would convert biomass into syngas and biochar,
waste plastics back into usable oil, or waste into safely disposable substances.

Pyrolysis differs from other processes such as combustion and hydrolysis in
that it usually does not involve the addition of other reagents such as oxygen
(O2, in combustion) or water (in hydrolysis) (Cory et al., 2009). In practice, it
is often not practical to achieve completely oxygen- or water-free conditions,
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especially as pyrolysis is often conducted on complex mixtures. This term has
also been applied to the decomposition of organic material in the presence of
superheated water or steam (hydrous pyrolysis), for example, in the steam
cracking of oil. Pyrolysis has been assumed to take place during catagenesis,
the conversion of buried organic matter to fossil fuels.

The possibility of extinguishing a polymer flame depends on the mechanism
of thermal decomposition of the polymer. Whereas ignition of a polymer correl-
ates primarily with the initial temperature of decomposition, steady combustion
is related to the tendency of the polymer to yield a char, which is produced at
the expense of combustible volatile fragments. Therefore, the dependence of
steady combustion on the amount of char seems to be simple, and in an early
study, it was established that the oxygen index shows a very good correlation
with the char yield (Van Klevelen, 1975). In reality, char also serves as a phys-
ical barrier for heat flux from the flame to the polymer surface, as well as
a diffusion barrier for gas transport to the flame (Levchik and Wilkie, 2000).
Therefore, the contribution of the char can be more significant than is expected
from a simple reduction in combustible gases.

Four general mechanisms are important for thermal decomposition of polymers
(Hirschler, 2000):

1. Random chain scission, in which the polymer backbone is randomly
split into smaller fragments;

2. Chain-end scission, in which the polymer depolymerizes from the
chain ends;

3. Elimination of pendant groups without breaking of the backbone; and
4. Cross-linking.

Only a few polymers decompose predominantly through one mechanism; in
many cases, a combination of two or more mechanisms is in effect. For
example, polyethylene and polypropylene tend primarily to decompose via
random chain scission, which in the case of polyethylene, is also accompanied
by some cross-linking. Poly(methyl methacrylate) and polystyrene tend to
depolymerize, poly(vinyl chloride) primarily undergoes elimination of pendant
groups (dehydrochlorination), and polyacrylonitrile crosslinks.

In terms of flammability, random scission and depolymerization polymers
are usually more flammable than polymers that cross-link or remove pendant
groups. Cross-linking (Wilkie et al., 2001) leads to precursors of char and as
a result, to lower flammability. Elimination of pendant groups results in
double bonds, which can also give cross-links or lead to aromatization.

In general, polymers with aromatic or heterocyclic groups in the main
chain are less combustible than polymers with an aliphatic backbone (Aseeva
and Zaikov, 1986). Polymers with short flexible linkages between aromatic
rings tend to cross-link and char. These polymers are thermally stable and
show relatively good flame retardancy. For example, bisphenol A–based poly-
carbonate, phenol formaldehyde resins, and polyimides are self-extinguishing
and show either a V-2 or V-1 rating in the UL-94 test. On the other hand,
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polymers with relatively long flexible (aliphatic) linkages are still relatively
combustible despite aromatics in the backbone. Examples of these polymers
are poly(ethylene terephthalate), poly(butylene terephthalate), polyurethanes,
and bisphenol A–based epoxy resin.

1.6 COMBUSTION

Combustion, or burning, is a high-temperature exothermic redox chemical
reaction between a fuel (the reductant) and an oxidant, usually atmospheric
oxygen that produces oxidized, often gaseous products, in a mixture termed
smoke. In thermodynamics, the term exothermic process (exo-: “outside”)
describes a process or reaction that releases energy from the system to its sur-
roundings, usually in the form of heat, but also in a form of light (e.g.,
a spark, flame, or flash), electricity (e.g., a battery), or sound (e.g., explosion
heard when burning hydrogen).

In complete combustion, the reactant burns in oxygen, and produces
a limited number of products. When a hydrocarbon burns in oxygen, the reac-
tion primarily yields carbon dioxide and water. When elements are burned, the
products are primarily the most common oxides. Carbon yields carbon dioxide,
sulfur yields sulfur dioxide, and iron yields iron (III) oxide. The combustion of
methane, a hydrocarbon, is as in Equation 1.1.

CH4 þ 2O2 ! CO2 þ 2H2 ð1:1Þ

Combustion in a fire produces a flame, and the heat produced can make combus-
tion self-sustaining. Combustion is often a complicated sequence of elementary
radical reactions. Solid fuels, such as wood and coal, first undergo endothermic
pyrolysis to produce gaseous fuels; their combustion then supplies the heat
required to produce more of them. Combustion is often hot enough that either
incandescent light glows or a flame is produced.

Combustionis a type of chemical process in which a substance reacts rapidly
with oxygen releasing heat. The original substance is called the fuel, and the
source of oxygen is called the oxidizer. The fuel can be a solid, aliquid, or
a gas, e.g., for aeroplane propulsion the fuel is usually a liquid.

Burning or combustion is a chemical process that occurs when oxygen com-
bines/reacts with a substance producing sufficient heat and light (exothermic
reaction) to cause ignition. The chemical process is called oxidation. The mater-
ials are oxidized continuously until they are exposed to an oxidizing agent (e.g.,
air) or directly to oxygen. At normal temperatures, the rate at which oxidation
occurs is slow, and the heat generated is negligibly small, and is naturally con-
ducted away from the material by the immediate environment. The oxidation
rate increases with the increase of temperature, more and more heat releases,
and pyrolysis takes place at a temperature specific to the material, i.e., the
material decomposes by the action of heat.

Combustion means burning. It is an exothermic process that requires
three components to start a chemical chain reaction, namely:
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1. heat,
2. oxygen, and
3. a suitable fuel.

The combustion is self-catalyzing and unless controlled, combustion continues
as long as the oxygen, the fuel or the excess heat remain. For the combustion
process to take place, fuel, oxygen, and an ignition heat source are required.
For example, in acampfire, wood is the fuel, the surrounding air provides the
oxygen, and a match or lighter is the ignition heat source. Increasing any of
these elements increases the fire’s intensity, while eliminating any one of them
causes the process to stop. If the campfire is smothered with water or dirt, for
example, the oxygen can no longer get to the heat and fuel, and it goes out.

1.6.1 FUEL

Fuel is the substance that burns during the combustion process. All chemical
fuels contain potential energy; this is the amount of energy that is released
during a chemical reaction. The quantity of energy released by a substance
during burning is known as the heat of combustion. Each fuel has a specific
energy density, or megajoules (MJs) of energy produced per kilogram (kg) of
the substance; methane, for example, has an energy density of 55.5 MJ/kg,
meaning that it can supply more energy than sulfur, having an energy density
of 9.16 MJ/kg.

A wide variety of substances may be used as fuels, but hydrocarbons are
among the most common. Some examples of fuels are methane, propane, gas-
oline, and jet fuel. All fossil fuels, including coal and natural gas, are hydrocar-
bons. Other substances that are commonly used as fuels include hydrogen,
alcohol, and biofuels such as wood.

Combustion, or burning, is a redox chemical reaction that releases heat.
A fuel (the reductant) reacts with an oxidant (e.g., atmospheric oxygen), thereby
producing mixed oxidized gaseous products called smoke. Combustion in a fire
produces a flame, and the heat produced can make combustion self-sustaining.
Combustion is often a complicated sequence of elementary radicals. Wood and
some other solid fuels first undergo endothermic pyrolysis producing gaseous
fuels, which on combustion, supply the heat required to produce more fuels.
Combustion is often hot enough that either light glows or a flame is produced.
A simple example can be seen in the combustion of hydrogen and oxygen into
water vapor. The reaction is commonly used for fuelling rocket engines. This
reaction releases 242 kJ/mol of heat and reduces the enthalpy accordingly at
constant temperature and pressure (Equation 1.2).

2H2 gð Þ þ O2 gð Þ ! 2H2O gð Þ ð1:2Þ

Combustion of an organic fuel in the air always releases heat because the
double bond in O2 is much weaker than other double bonds or pairs of single
bonds, and therefore, the formation of the stronger bonds in the combustion
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products of CO2 and H2O results in the release of energy. The bond energies
in the fuel are not significant, as they are similar to those in the combustion
products; for example, the sum of the bond energies of CH4 is nearly the
same as that of CO2. The heat of combustion is about -418 kJ per mole of O2

consumed in a combustion reaction and can be estimated from the elemental
composition of the fuel (Schmidt-Rohr, 2015).

In order for a fire to start or be sustained, a fuel, an oxidizer, and an ignition
source must be present. If one of the three components is eliminated, then there
cannot be a fire (or explosion).

Fuel, a flammable or combustible material, in combination with a sufficient
quantity of an oxidizer such as oxygen gas or another oxygen-rich compound
(though nonoxygen oxidizers exist), is exposed to a source of heat or ambient
temperature above the flash point for the fuel–oxidizer mix. The fire tetrahe-
dron or fire pyramid (Figure 1.2) adds a fourth component-chemical chain
reaction–as a necessity in the prevention and control of fires. The free radicals
formed during combustion are important intermediates in the initiation and
propagation of the combustion reaction. Fire suppression materials that scav-
enge these free radicals are able to sustain a rate of rapid oxidation that pro-
duces a chain reaction. Fire cannot exist without all of these elements in place
and in the right proportions. For example, a flammable liquid would start
burning only if the fuel and oxygen are in the right proportions. Some fuel-

FIGURE 1.2 Fire Tetrahedron (https://en.wikipedia.org/wiki/File:Fire_tetrahedron.svg,
(free to use).
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oxygen mixes may require a catalyst, a substance that is not consumed when
added, in any chemical reaction during combustion, but which enables the
reactants to combust more readily.

Once ignited, a chain reaction must take place whereby fires can sustain their
own heat by the further release of heat energy in the process of combustion and
may propagate, provided there is a continuous supply of an oxidizer and fuel.

1.7 COMBUSTION PRODUCTS

The gaseous products released during combustion of polymers and fibers are
shown in Table 1.1 (Lewin and Sello, 1975).

1.8 IGNITION

During burning, when the flashpoint is reached, runaway exothermic reactions
are triggered. This is accompanied by the appearance of a flame or glowing
zone. This phenomenon is known as ignition. The time interval between the
onset of heating and ignition is called ignition time.

Ignition of fabrics (such as apparel, upholstery, and bedding materials) sub-
jected to open flames is a topic of much relevance in understanding and con-
trolling the initiation of unwanted fires. The ignitability of materials is of basic
importance when fire initiation and developments are analyzed. For example,
in order to predict the burning behavior of fabrics, it is crucial to understand
the role played by various physical and chemical properties in determining:

• Whether ignition would occur, and
• If it does occur, the duration of exposure to accomplish it.

TABLE 1.1

Gaseous products released during combustion of organic polymers

Polymer/Fibers Gases

All organic polymers CO, CO2

Nitrogen-containing polymers (wool, silk, acrylic, polyurethanes,
amino resins etc.)

NO, NO2, NH3, HCN

Wool, vulcanised rubber, sulphur containing polymers SO2, H2S, COS, CS2
Cellulosic fibers Formic and acetic acid

Wood, cotton and paper Acrolein

Polyolefin and others Alkanes, alkenes

Polystyrene, PVC, polyesters Benzene

Wood, cotton, paper, phenolic resins Aldehydes

Phenolic resins Phenol, formaldehyde

PVC, PTEE, and other halogenated flame retardants HCl, HF, HBr
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Fabrics that are considered inherently noncombustible are made from what are
termed high-performance fibers (HPFs), either inorganic fibers such as glass or
ceramic fibers, or fibers spun from thermally resistant synthetic polymers, typic-
ally fibers such as Kevlar and Nomex, that are made from aramid polymers.
HPFs have very strong bonds and require high-heat energy to break them.

One must understand the mechanisms and conditions that lead to a sustained
appearance of a flame in the gas phase when a combustible solid is heated by an
external source. Two types of ignition are possible under these conditions: spon-
taneous (auto) and piloted (forced). This depends on whether the ignition occurs
with or without the aid of an external pilot such as a spark or a flame. From the
fire research perspective, piloted ignition is more important because:

• It occurs at a lower threshold;
• It is the mechanism responsible for fire growth; and
• In practice, it is usually impossible to exclude all possible external

pilot sources.

1.8.1 AUTOIGNITION

As bonds break, the bond-fragments can form combustible substances liberated
as a gas, depending on the initial chemical composition of the base material.
The amount of gas liberated increases with temperature, and when its ignition
temperature is reached (forced ignition or auto-ignition) burning occurs.
However, there must be sufficient oxygen present to combine with the gas
molecules to generate the amount of heat that will raise the temperature to
the point of ignition.

The lowest temperature at which a substance spontaneously (in the absence
of external ignition sources such as flame or spark) ignites in a normal atmos-
phere is known as the autoignition temperature or kindling point of the particu-
lar substance. This temperature is required to supply the activation energy
needed for combustion. The temperature at which a chemical ignites decreases
as the pressure increases or oxygen concentration increases. This is applicable to
a combustible fuel mixture. If the heat released is sufficient to sustain or increase
the oxidation rate, then burning continues until the material is consumed. While
burning continuously, more and more heat releases; the temperature may
reach a level causing neighboring flammable materials to ignite; and flash-
over may occur.

1.8.3 PILOTED IGNITION

The earliest known scientific investigation into piloted ignition of wood was car-
ried out by Bamford et al. (1946). They measured the time in which flaming
would persist upon removal of the pilot heat source called the ignition threshold.
They postulated a critical lower limit pyrolysate mass flow rate criterion for sus-
tained ignition. The sustained ignition is possible if the pyrolysate mass flux at
the fuel surface is less than 2.5 x 10–4 g/cm2/s.

Fire Hazards and Associated Terminology 17



A comprehensive experimental and theoretical works of spontaneous and
piloted ignition of cellulosic solids was reported by Akita (1959). He presented
evidence that the ignition occurs due to some thermal phenomenon directly
pertaining to the exposed surface itself. Formation of a combustible gas mixture
in the proximity of the exposed surface in itself is a necessary and sufficient con-
dition for piloted ignition (since an external heat source already exists). Such
a condition is necessary but not sufficient to ensure spontaneous ignition. This
sufficiency is fulfilled by a thermal condition at the attainment of a temperature
above 500°C by the exposed surface.

Martin (1964) published his work on ignition based on the following:

• While the internal temperature profile is considerably influenced by
pyrolysis, a critical exposed surface temperature criterion describes
the onset of ignition.

• The persistence of ignition depends not on any unique composition
of such a pyrolysis product mixture, but upon the continued outflow
of flammable pyrolysis products.

• The exposed surface is completely pyrolyzed long before ignition.

Thomas and Dry Dale (1987) defined critical ignition temperature as the sur-
face temperature of material at which ignition occurs. Furthermore, the
piloted ignition temperature can be defined as the lowest temperature at
which the ignition of the decomposition products gives rise to sustained
burning at the surface. It is similar to the fire point of a combustible liquid,
but differs in what is referred to as a surface temperature, rather than as
a bulk temperature.

1.8.2 PROCESS OF IGNITION

The ability to control fire dramatically changed the habits of early humans.
Making fire to generate heat and light made it possible for people to cook food,
simultaneously increasing the variety and availability of nutrients, and reducing
disease by killing organisms in the food. The heat produced also helped people
stay warm in cold weather, enabling them to live in cooler climates. In addition,
fire kept nocturnal predators at bay. Evidence of cooked food is found from
1.9 million years ago (Bowman et al., 2009), although there is a theory that fire
could have been used in a controlled fashion about 1 million years ago. Early
humans harnessed fire as early as 1million years ago, much earlier than previ-
ously thought, which suggests evidence unearthed in a cave in South Africa
(Krajick, 2011). Evidence became widespread around 50,000 to 100,000 years
ago, suggesting regular use from this time; resistance to air pollution started to
evolve in human populations at a similar point in time. The use of fire became
progressively more sophisticated, for example, to create charcoal and to control
wildlife from tens of thousands of years ago.

Fire has also been used for centuries as a method of torture and execution,
as evidenced by deaths by burning, as well as by torture devices such as the
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iron boot, which could be filled with water, oil, or even lead, and then be
heated over an open fire to the agony of the wearer.

Setting fuel a flame releases usable energy. Wood was a prehistoric fuel, and is
still viable today. In power plants, the use of fossil fuels, such as petroleum, nat-
ural gas, and coal, supplies the vast majority of the world’s electricity today.

1.9 LIMITING OXYGEN INDEX (LOI)

Minimum percent of oxygen in the environment that sustains burning under spe-
cified test conditions. In other terms, it is the content of oxygen in an oxygen-
nitrogen mixture that keeps the sample at the limit of burning (Equation 1.3).

LOI ¼ O2

H2 þ O2
� 100 ð1:3Þ

Tesoro (1978) defined several terms relating to flammability, a few are discussed
next.

1.10 CHARRING

Charring is a chemical process of incomplete combustion of certain solids
when subjected to high heat. The resulting residue matter is called char. By
the action of heat, charring removes hydrogen and oxygen from the solid, so
that the remaining substance is composed primarily of carbon. Polymers such
as thermoset, as well as most solid organic compounds such as wood or bio-
logical tissue, exhibit charring behavior (Chylek et al., 2015).

Charring means partially burning to blacken the surface. Charring can
result from naturally occurring processes such as fire; it is also a deliberate
and controlled reaction used in the manufacturing of certain products. The
mechanism of charring is a part of the normal burning of certain solid fuels such
as wood. During normal combustion, the volatile compounds created by charring
are consumed at the flames within the fire or released to the atmosphere, while
combustion of char can be seen as glowing red coals or embers that burn without
the presence of flames.

Coke and charcoal are both produced by charring, whether on an industrial
scale or through normal combustion of coal or wood. Normal combustion con-
sumes the char, as well as the gases produced in its creation, while industrial
processes seek to recover the purified char with minimal loss to combustion.
This is accomplished by either burning the parent fuel (wood or coal) in a low-
oxygen environment or by heating it to a high temperature without allowing
combustion to occur. In industrial production of coke and charcoal, the volatile
compounds that are driven off during charring are often captured for use in
other chemical processes.

Charring is an important process in the combustion ignition of solid
fuels and in smouldering. In construction of heavytimbered wood buildings,
the predictable formation of char is used to determine the fire rating of
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supporting timbers and is an important consideration in fire protection
engineering.

Charring of organic materials starts at temperatures considerably lower than
that of soot formation. Burning of food during cooking (e.g., the production of
nicely black toast) is an example of low-temperature charring. At temperatures
above about 300°C, most of the organic materials undergo a slight thermal
decomposition; hydrogen and other noncarbon elements are stripped from
carbon chains and rings and the carbon condenses into a graphite like structure.
The density of black porous residuum depends on the mass ratio of carbon to
other elements in the original material.

Charring of polymers proceeds through various stages (Levchik and Wilkie,
2000):

1. Cross-linking,
2. Aromatization,
3. Fusion of aromatics, and
4. Graphitization.

The ability of a polymer to perform in one or several of these stages leading
to char formation depends primarily on the polymer structure. However, this
performance can be improved significantly by the use of flame retardants.
Although many polymers tend to cross-link at early stages of thermal decom-
position, this does not necessarily result in char formation. Char is formed only
if the cross-linked polymer contains aromatic fragments and/or conjugated
double bonds and is prone to aromatization during thermal decomposition
(Wilkie et al., 2001). Fused aromatic rings in the char tend to assemble into
small stacks, which are precursors of graphite. These pregraphitic domains are
embedded in the amorphous char. This type of char, called turbostratic char, is
usually formed at 600◦C to 900◦C, temperatures typically found on the surface
of burning polymers. Char that contains more pregraphitic domains is more
stable to thermal oxidation and therefore less likely to burn away and expose
the polymer surface to the heat of the flame. On the other hand, highly
graphitized chars are rigid and may have cracks, which do not retard diffusion
of combustible materials to the flame. The best-performing char would be
amorphous uncracked char with requisite pregraphitic domain content
(Levchik, 2007).

1.11 SMOLDERING

Combustion occurs without flame and without prior flaming combustion, but
usually with incandescence and smoke. Smoldering is the slow, low-temperature,
flameless form of combustion, sustained by the heat that evolves when oxygen
directly attacks the surface of a condensed-phase fuel. Many solid materials can
sustain a smoldering reaction, including coal, cellulose, wood, tobacco, synthetic
foams, charring polymers (including polyurethane foams), and some types of
dust. Common examples of smouldering phenomena are the initiation of
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residential fires on upholstered furniture by weak heat sources and the persistent
combustion of biomass behind the flaming front of wildfires.

The fundamental difference between smoldering and flaming combustion is
that smoldering occurs on the surface of the solid, rather than in the gas
phase. Smoldering is a surface phenomenon but can propagate to the interior
of a porous fuel if it is permeable to flow. The characteristic temperature and
heat released during smoldering are low compared to those in the flaming
combustion. Smoldering propagates in a creeping fashion, around 0.1 mm/s
(0.0039 in/s), which is about ten times slower than flames spread over a solid.
In spite of its weak combustion characteristics, smoldering is a significant fire
hazard. Smoldering emits toxic gases (e.g., carbon monoxide) at a higher yield
than flaming fires and leaves behind a significant amount of solid residue. The
emitted gases are flammable and could later be ignited in the gas phase, trig-
gering the transition to flaming combustion.

1.12 AFTERGLOW

Glowing combustion in a material after cessation (natural or induced) of
flame. The behavior of thermoplastic material towards the flame/heating has
a different story. Fabrics made of synthetic materials that exhibit melting and
surface involvement in afterglow is different from those exhibiting the same in
flaming. Prevention method of afterglow is also different. Afterglow is mainly
due to the burning of remnant char, which forms as a result of lack of oxygen
in surrounding atmosphere. Carbon and oxygen react to form carbon monox-
ide (CO); this is an exothermic reaction, and energy liberated is 26.4 kcal. The
char becomes ash in afterglow process by conversion of CO to CO2 in the
presence of excess oxygen.

1.13 SELF-EXTINGUISHING MATERIALS

Self-extinguishing materials are incapable of sustained combustion in air under
the specified test conditions after removal of the external source of heat.

Hensel (2011) said flame retardant is good, but self-extinguishing is better
for electrical installations. Only self-extinguishing material provides added safety
with respect to fire protection. All Hensel products made from thermoplastic
are flame retardant and self-extinguishing and fulfill the glow wire tests at least
at 750°C or even at 960°C. The proof of self-extinguishing characteristics
should be carried out using a glow wire test at a temperature of 750°C. The
glow wire test at 750°C should prove that a flame would extinguish itself within
30 s of the energy source being switched off, i.e., it does not continue burning
or catch fire.

In the Russian aviation industry, in flame resistance assessment, the deter-
mining indices (according to the industry standard OST 1090094-79) are the
duration of combustion and the length of the burned part of the polymer spe-
cimen (measuring 50 x 290 mm) during heating by a gas burner with a flame
temperature of 840°C. According to the given indices, materials are classified
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into low-burning, self-extinguishing, slow-burning, and burning (combustion
time >15 s, length of burnt part of specimen >170 mm) (Petrova et al., 2014).

The airplane trims should satisfy the following requirements: as a minimum
they should be self-extinguishing (after exposure to a gas burner flame for 12
s (60 s), the duration of residual burning should not exceed 15 s, and the
length of burn-through should not exceed 152 mm); they should also have
limited smoke formation (the specific optical density of smoke within 4 min
should be no more than 200 units) (Barbot’ko, 2010; Mikhailin, 2011).

1.14 SMOKE

Smoke is a fine dispersion of carbon, other solids, and liquids resulting from
incomplete combustion; particles are not individually visible, but cause opacity
due to scattering and/or absorption of visible light.

Smoke is a collection of airborne solids, liquid particulates, and gases that
are emitted when a material undergoes combustion or pyrolysis, together with
the quantity of air that is entrained or otherwise mixed into the mass. It is
commonly an unwanted by-product of fires (including stoves, candles, oil
lamps, and fireplaces), but may also be used for pest control (fumigation),
communication (smoke signals), defensive and offensive capabilities in the
military (smoke screen), cooking, and smoking (tobacco, marijuana (drug). It
is used in rituals in which incense, sage, or resin is burned to produce a smell
for spiritual purposes. Smoke is sometimes used as a flavoring agent, and as
a preservative for various foodstuffs. Smoke is also a component of internal
combustion engine exhaust gases, particularly diesel exhaust.

Smoke inhalation is the primary cause of death in victims of indoor fires. The
smoke kills by a combination of thermal damage, poisoning and lung irritation
caused by carbon monoxide, hydrogen cyanide, and other combustion products.

Smoke is an aerosol (or mist) of solid particles and liquid droplets that are
close to the ideal range of sizes for Mie scattering of visible light. A smoke
cloud does not obstruct an image, but thoroughly scrambles it.

Polymers are a significant source of smoke. Aromatic side groups, e.g., in poly-
styrene, enhance generation of smoke. Aromatic groups integrated in the polymer
backbone produce less smoke, likely due to significant charring. Aliphatic poly-
mers tend to generate the least smoke, and are non-self-extinguishing. However
presence of additives can significantly increase smoke formation. Phosphorus-
based and halogen-based flame retardants decrease production of smoke. Higher
degree of cross-linking between the polymer chains has such an effect as well
(Van Krevelen and Nijenhuis, 2009).

1.15 FLAME

A flame (from Latin flamma) is the visible, gaseous part of a fire. It is caused by
a highly exothermic reaction taking place in a thin zone. Very hot flames are hot
enough to have ionized gaseous components of sufficient density to be considered
plasma.
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There are different methods of distributing the required components of com-
bustion to a flame. In a diffusion flame, oxygen and fuel diffuse into each other;
the flame occurs where they meet. As a result, the flame speed is limited by the
rate of diffusion. In a diffusion flame, combustion takes place at the flame surface
only, where the fuel meets oxygen in the right concentration; the interior of the
flame contains unburnt fuel. This is opposite to combustion in a premixed flame.

In a premixed flame, the oxygen and fuel are premixed beforehand, which
results in a different type of flame. Candle flames (diffusion flames) operate
through evaporation of the fuel, which rises in a laminar flow of hot gas that
then mixes with surrounding oxygen and combusts.

A flame is a mixture of reacting gases and solids emitting visible, infrared,
and sometimes ultraviolet light, the frequency spectrum of which depends on
the chemical composition of the burning material and intermediate reaction
products. In many cases, such as the burning of organic matter, for example
wood, or the incomplete combustion of gas, incandescent solid particles called
soot produce the familiar red-orange glow of fire. This light has a continuous
spectrum. Complete combustion of gas has a dim blue color due to the emis-
sion of single-wavelength radiation from various electron transitions in the
excited molecules formed in the flame. Usually oxygen is involved, but hydro-
gen burning in chlorine also produces a flame, producing hydrogen chloride
(HCl). Among many other possible combinations producing flames are fluorine
and hydrogen, and hydrazine and nitrogen tetroxide. Hydrogen and hydrazine/
unsymmetrical dimethylhydrazine (UDMH) flames are similarly pale blue, while
burning boron and its compounds, evaluated in the mid-20th century as a high-
energy fuel for jet and rocket engines, emits intense green flame, leading to its
informal nickname of “Green Dragon”.

The chemical kinetics occurring in the flame are very complex and typically
involve a large number of chemical reactions and intermediate species, most of
them radicals. For instance, a well-known chemical kinetics scheme, GRI-Mech
(2007) uses 53 species and 325 elementary reactions to describe combustion of
biogases.

The glow of a flame is complex. Black-body radiation is emitted from soot,
gas, and fuel particles, though the soot particles are too small to behave like
perfect blackbodies. There is also photon emission by de-excited atoms and
molecules in the gases. Much of the radiation is emitted in the visible and
infrared bands. Flame color depends on several factors, the most important
typically being black-body radiation and spectral band emission, with both
spectral line emission and spectral line absorption playing smaller roles. In
hydrocarbon flames, the most common type of flame, the most important
factor determining color is oxygen supply and the extent of fuel-oxygen pre-
mixing, which determines the rate of combustion, and thus the temperature
and reaction paths, thereby producing different color hues.

The dominant color in a flame changes with temperature. The photo of the
forest fire in Canada is an excellent example of this variation. Near the
ground, where most burning occurs, the fire is either white, the hottest color
possible for organic material in general, or yellow. Above the yellow region,

Fire Hazards and Associated Terminology 23



the color changes to orange, which is cooler, then to red, which is cooler still.
Above the red region, combustion no longer occurs, and the uncombusted
carbon particles are visible as black smoke.

The common distribution of a flame under normal gravity conditions
depends on convection, as soot tends to rise to the top of a general flame, as
in a candle in normal gravity conditions, making it yellow. In microgravity or
zero gravity (NASA, 2010), such as an environment in outer space, convection
no longer occurs, and the flame becomes spherical, with a tendency to become
more blue and more efficient (although it may go out if not moved steadily,
because the CO2 from combustion does not disperse as readily in microgravity,
and tends to smother the flame). There are several possible explanations for
this difference, of which the most likely is that the temperature is sufficiently
evenly distributed so that soot is not formed and complete combustion occurs
(NASA, 2007). Experiments by NASA reveal that diffusion flames in micro-
gravity allow more soot to be completely oxidized after they are produced
than diffusion flames on Earth, because of a series of mechanisms that behave
differently in microgravity when compared to normal gravity conditions (www.
derose.com, 2019). These discoveries have potential applications in applied sci-
ence and industry, especially those concerning fuel efficiency.

In combustion engines, various steps are taken to eliminate a flame. The
method depends mainly on whether the fuel is oil, wood, or a high-energy fuel
such as jet fuel.

1.15.1 FLAME TEMPERATURES

It is true that objects at specific temperatures do radiate visible light. Objects
whose surface is at a temperature above approximately 400°C (752°F) glow,
emitting light at a color that indicates the temperature of that surface. It is
a misconception that one can judge the temperature of a fire by the color of
its flames or the sparks in the flames. For many reasons, chemically and
optically, these colors may not match the red/orange/yellow/white heat tem-
peratures on the chart.

1.15.2 ADIABATIC FLAME TEMPERATURE

Adiabatic means no loss of heat to the atmosphere. An adiabatic process occurs
without transfer of heat or mass of substances between a thermodynamic system
and its surroundings. In the study of combustion, there are two types of adiabatic
flame temperature, depending on how the process is completed. These are con-
stant volume and constant pressure, describing the temperature that the combus-
tion products theoretically reach if no energy is lost to the outside environment.
The constant volume adiabatic flame temperature is the temperature that results
from a complete combustion process that occurs without any work, heat transfer
or changes in kinetic or potential energy. Its temperature is higher than the con-
stant pressure process because none of the energy is utilized to change the
volume of the system (i.e., generate work).
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The adiabatic flame temperature of a given fuel and oxidizer pair (Table 1.2)
(Fire Wikipedia, accessed 9.2.2019) indicates the temperature at which the gases
achieve stable combustion. This is the maximum temperature that can be
achieved for given reactants. Heat transfer, incomplete combustion, and dissoci-
ation all result in lower temperature. The maximum adiabatic flame temperature
for a given fuel and oxidizer combination occurs with a stoichiometric mixture
(correct proportions such that all fuel and all oxidizer are consumed).

A fire-resistance rating typically means the duration for which a passive fire
protection system can withstand a standard fire resistance test. This can be
quantified simply as a measure of time, or it may entail a host of other criteria,
involving other evidence of functionality or fitness for purpose.

1.16 FLAMMABILITY

Flammability is the tendency of a material to burn with a flame. Flammable
materials are those that ignite more easily than other materials, whereas those
that are harder to ignite or burn less vigorously are combustible.

Lewin (1985) explains flammability as the tendency of a material to burn with
a flame. Indeed the flammability of textiles is a measurement of the ease with
which fabric is able to be ignited and how effectively it burns. Kasem and Rouette
(1972) stated that the ignitability of the fabric as well as the combustibility are the
indicators of fabric flammability characteristics. The combustibility of the fabric
is stated as the rate at which the flame (or the afterglow) is able to propagate.
Ignition of the fabric is described as a more complex phenomenon by Backer
et al. (1976). Ignition involves the transfer of heat with thermal decomposition
governed by fluid mechanics and chemical kinetics. Exothermic reactions are trig-
gered as the ignition temperature of the fabric is reached. The reactions accom-
panied by a flame or glowing of any sort is termed ignition.

The degree of flammability or combustibility in air depends largely upon
the chemical composition of the subject material, as well as the ratio of mass
to surface area. For example, finely divided wood dust can undergo explosive

TABLE 1.2

Adiabatic flame temperature of some fuel and oxidizer pairs

Fuel and oxidizer pairs Adiabatic flame temperature

Oxy-dicyanoacetylene 4,990°C (9,000°F)

Oxy-acetylene 3,480°C (6,300 °F)

Oxyhydrogen 2,800°C (5,100 °F)

Air-acetylene 2,534°C (4,600 °F)

Bunsen burner (air-natural gas) 1,300 to 1,600°C (2,400 to 2,900°F)
(Begon et al., 1996)

Candle (air-paraffin) 1,000°C (1,800°F)
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combustion and produce a blast wave. A piece of paper (made from wood)
catches on fire quite easily. A heavy oak desk is much harder to ignite, even
though the wood fiber is the same in all three materials.

Common sense (and indeed scientific consensus until the mid-1700s) would
seem to suggest that material disappears when burned, as only the ash is left. In
fact, there is an increase in weight because the combustible material reacts (or
combines) chemically with oxygen, which also has mass. The original mass of
combustible material and the mass of the oxygen required for combustion
equals the mass of the combustion products (ash, water, carbon dioxide, and
other gases). Antoine Lavoisier, “father of modern chemistry” (August 26,
1743–May 8, 1794), a French nobleman and one of the pioneer chemists in
these early insights, stated that nothing is lost, nothing is created, everything is
transformed, which would later be known as the law of conservation of mass.
Lavoisier used the experimental fact that some metals gained mass when they
burned to support his ideas.

Historically, flammable, inflammable and combustible meant capable of
burning. The word “inflammable” came through French from the Latin
inflammāre = “to set fire to”, where the Latin preposition “in-” means “in” as
in “indoctrinate”, rather than “not” as in “invisible” and “ineligible”.

The word “inflammable” may be erroneously thought to mean “nonflam-
mable”. The erroneous usage of the word “inflammable” is a significant safety
hazard. Therefore, since the 1950s, efforts to put forward the use of “flammable”
in place of “inflammable” have been accepted by linguists, and it is now the
accepted standard in American English and British English. Antonyms of “flam-
mable/inflammable” include: nonflammable, noninflammable, incombustible,
noncombustible, not flammable, and fireproof.

Flammable applies to materials that ignite more easily than other materials,
and thus, are more dangerous and more highly regulated. Less easily ignited less-
vigorously burning materials are combustible. For example, in the United States,
flammable liquids, by definition, have a flash point below 100°F (38°C),whereas
combustible liquids have a flash point above 100°F (38°C). Flammable solids are
solids that are readily combustible, or may cause or contribute to fire through
friction. Readily combustible solids are powdered, granular, or pasty substances
that easily ignite by brief contact with an ignition source, such as a burning
match, and spread flame rapidly. The technical definitions vary between countries
so the United Nations created the Globally Harmonized System of Classification
and Labeling of Chemicals, which defines the flash point temperature of flam-
mable liquids as between 0° and 140°F (−17.8° and 60°C) and combustible
liquids between 140°F (60°C) and 200 F (93°C) (United Nations, 2011).

Flammability is the ability of a substance to burn or ignite, causing fire or
combustion. The degree of difficulty required to cause the combustion of
a substance is quantified through fire testing. Internationally, a variety of test
protocols exist to quantify flammability. The ratings achieved are used in build-
ing codes, insurance requirements, fire codes and other regulations governing
the use of building materials as well as the storage and handling of highly flam-
mable substances inside and outside of structures and in surface and air
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transportation. For instance, changing occupancy by altering the flammability
of the contents requires the owner of a building to apply for a building permit
to make sure that the overall fire protection design basis of the facility can take
the change into account.

The factors affecting the flammability of apparel are:

• Fiber content,
• Fiber construction,
• Fabric weight,
• Fabric construction,
• Fabric surface texture,
• Moisture content,
• Presence of additives or contaminants in the fabric,
• Garment design,
• Effect of components used in apparel, and
• Laundering of the apparel after use.

1.17 FLAME-RESISTANT VS. FLAME-RETARDANT

Various terms are used to express the way a fabric reacts when in contact with
a flame. If negligibly affected it is said to be flame-proof or fire-proof; if it
ignites but self-extinguishes on removal from the flame, it is called fire-resistant–
difficult to burn; if the material does not burn but can melt and/or decompose
at high temperatures, it is referred to as flame retardant, noncombustible or
incombustible – not capable of igniting and burning. A very important aspect
of flameproof/fireproof textiles is that they are thermally stable; they do not
readily burn or shrink when exposed to a flame or intense heat (heatproof/
heat-resistant).

Flame-resistant fabrics are made from materials that are inherently nonflam-
mable–the materials have flame resistance built into their chemical structures.
Fabrics made with these types of materials are designed to prevent the spread
of fire and do not melt or drip when in close proximity to a flame. Because
flame-resistant fabrics are not usually made from 100% flame-resistant mater-
ials, they burn, but do so very, very slowly, and are often self-extinguishing. The
most important function of these materials and fabrics is to prevent the further
spread of fire.

Fire-resistant is a synonym for flame-resistant. It means exactly the same
thing, and it is correct to use them interchangeably.

With fire-resistant clothing, the promise is not that the garments will never
catch fire. They are designed to resist igniting, and generally fulfill this purpose
in all but the most extreme situations. The great strength of flame-resistant gar-
ments, however, is that they prevent fires from spreading. Even if the garments
do catch fire, they almost always extinguish themselves quickly.

Fire-retardant or flame retardant fabrics are those that have undergone chem-
ical treatment to acquire some of the same properties that flame-resistant fabrics
inherently have. As a result of these chemical procedures, flame retardant fabrics
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become self-extinguishing and slow-burning. Any type of fabric may be used, but
must undergo this treatment before it can be considered flame retardant.

If an employee works in environments where heat, fire, or electrical injuries
are a real possibility, the odds are good that this employee should be wearing
flame-resistant clothing.

Not all fire-resistant clothing is made from the same fabrics. There are multiple
different choices available, and no choice is perfect. Each comes with different
benefits and hazards. Each organization is best served by choosing the fabric that
will be most suited to its needs and working environment. There are three broad
categories of workers who should wear flame-resistant clothing for protection,
based on the type of hazard to which the workers would be exposed while
completing their work. The three primary hazards are (Ashley, 2017):

• Electric arc: People who are exposed to this hazard include electricians,
as well as certain utility workers and others.

• Flash fire: This category includes pharmaceutical and chemical workers,
as well as those who work in refineries and other industries.

• Combustible dust: This category includes workers in food processing
plants, and in the paper and pulp industry, among others.

Here are a few of the common fibers with inherent flame-resistant qualities
commonly used to create FR clothing (Ashley, 2017).

• Modacrylic: These are the most popular and common option available
today. These fibers are often used as part of a blend to create several
different flame-resistant fabrics. These various combinations of fibers
work together to create fabrics that can easily stand up to several types
of standards and regulations.

• Nomex: This is another type of fiber that has inherent flame-resistant
qualities. Unlike modacrylic fibers, Nomex can create FR garments
on its own. It doesn’t have to be a standalone, however. It can also be
combined with other materials such as Kevlar.

• Kevlar: These fibers are certainly flame-resistant, but have many other
additional properties such as high strength. Kevlar can create flame-
resistant clothing, as well as many other different items. When used to
make FR clothing, Kevlar is often combined with Nomex.

Each type of flame-resistant fabric will come with its own pros and cons. Kevlar,
for instance, is extremely heavy-duty, but consequently comes with a high price
tag. There are no specific flame-resistant clothing dangers, however, and all are
designed to protect the wearer from hazardous heat-based conditions.

Fire-resistant clothing is also referred to as FRC by industry people. The
garments underneath the flame-resistant clothing have a significant impact on
the safety and the effectiveness of the FRC clothing. Whenever someone wear
these garments, he or she should always take care to wear only nonmelting
garments underneath them.
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There are two primary reasons for this caution. The first is that by doing this,
essentially a second layer of FR protection is added. Even if the first layer of
outerwear gets damaged or burned, a second layer would protect the wearer. The
layer of air insulation between the two layers also helps keep the wearer safe.

Flame retardant fabrics are chemically treated to be slow-burning or self-
extinguishing when exposed to an open flame. These fabrics can be made
from any material, but they must be treated with special chemicals to qualify
as flame retardant.

The term flame retardants (FRs) subsume a diverse group of chemicals
which are added to manufacture materials, such as plastics and textiles, and
surface finishes and coatings. Flame retardants are activated by the presence
of an ignition source and are intended to prevent or slow the further develop-
ment of ignition by a variety of different physical and chemical methods. They
may be added as a copolymer during the polymerization of a polymer, mixed
with polymers at an molding or extrusion process or, particularly for textiles,
applied as a topical finish (EPA, 2005). Mineral flame retardants are typically
additive while organohalogen and organophosphorus compounds can be
either reactive or additive.

The most important difference between flame-resistant and flame retardant
fabrics lies in how each is made. Without a special chemical application,
a fabric does not qualify as flame retardant. Similarly, without being made of
certain nonflammable fibers, a fabric will not qualify as fire resistant.

The special protective wear is called fire-resistant clothing/fire-resistant gar-
ments/fire-resistant apparel, or even personal protective equipment which also
includes further accessories such as gloves, helmets, or boots. FR refers to the
flame-resistant or fire-resistant and heat-resistant properties of the clothing, by
virtue of which a fabric is able to resist burning or melting and even self-
extinguish once the source of ignition or fire is removed from it.

Fire-resistant clothing is basically made from two kinds of fabric that are dif-
ferentiated as treated and inherent FR fabrics. The former type quiet simply
includes the natural or synthetic fabrics that are later treated with a combin-
ation of flame retardant chemicals to give them the flame-resistant properties.
However, in the case of inherent fabrics, the fabric itself is made from fibers
that have flame-resistant qualities and this resistance is ingrained into the
molecular structure of the fiber by engineering retardant compounds into
a permanent chemical change inside the hollow core of a fiber, creating an all-
new fabric with FR characteristics (Islam, 2018).

Inherently flame retardant (FR) fibers may be of three types, namely:

1. Inherent thermally stable chemical structure (e.g., the polyaramids or
other aromatic structures),

2. Flame-retardant additives incorporated during the production of
manmade fibers (e.g., FR viscose), or

3. Produced by the synthesis of conventional fiber forming polymers
with flame retardant comonomers (e.g., FR polyester).
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The word inherent was not originally a textile or FR term. Its definition varies
slightly from source to source, but the common thrust is “by its very nature,
built-in, implicit,” while “treated” is usually defined as chemical engineering
to impart properties not previously present. Nature provides very few FR
fibers; the most well-known of these is asbestos, which is obviously not in
common use in protective apparel.

Conversely, all flame-resistant fibers in common use today for industrial
protective apparel are engineered by humans, using chemistry, to be flame-
resistant. What is important is not how the engineering was accomplished;
what matters is that the engineering was accomplished, correctly and consist-
ently, so that a garment is flame-resistant weeks later, months later, and years
later, regardless of how many times it is laundered (Margolin, 2012).

1.18 FLAME RETARDANTS (FRS)

Normal textile materials are finished with flame retardant agents in the form
of surface treatments, coatings, or functional finishes which become an integral
part of the fiber structure.

Flame retardant materials were first produced around 400 BC, but the need
for them was not realized much until the 17th century. In 1638, the idea of
reducing the risk of fire in theaters originated in Paris with fireproofing of
plaster and clay, thus beginning the process of creating flame-resistant mater-
ials. If humans intervene with chemistry to treat naturally flammable fibers,
they could prevent potential harm. Therefore, the process of making things
flame-resistant became a priority from this point on.

In 1735, Jonathan Wyld of England patented a flame-retarding mixture of
alum, ferrous sulfate, and borax. The first systematic attempt to make textiles
flame-resistant was made in 1821 by the eminent chemist Gay Lussac, who
developed a flame-retarding finish for hemp and linen fabrics that contained
various ammonium salts, with or without borax. The salts first broke down
into a nonflammable vapor when they were heated up, while borax was low-
melting and formed a glassy layer on fabrics. This was yet another step toward
making today’s textiles flame-resistant. By the 20th century, other scientists per-
fected the same method by incorporating stannic oxide into fabrics to make
them flame retardant. Stannic oxide, also known as tin oxide, is an off-white,
powdery product that is produced thermally from high-grade tin metal.

These techniques were used to make natural fibers fire-resistant. Once synthetic
materials started dominating the market, cotton producers needed to come up
with a better way to promote their products, or they would not have been able to
survive. The Army Quartermaster Corps’ were in demand for flame-resistant cloth-
ing and the research regarding fire-resistant fabrics increased to a large extent.
Advanced technologies of the 20th century allowed scientists to start the process of
chemically modifying the cellulose molecules on both the surfaces and within
cotton fibers. To keep this special process commercially viable, the scientists needed
to work hard to find a chemical combination that still kept the cotton’s strength
and durability while keeping the cost competitive (Caitlin, 2015).
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The chemical nature of textile substrates is highly diversified. Hence, the
field of flame retardancy is multidisciplinary and complex as well. The flame-
retarding chemicals and formulations are also numerous and include halogen,
phosphorous, nitrogen, antimony, sulphur, boron, and other elements in many
forms and combinations. Flame-retarding treatments require the application
of a relatively large quantity of chemicals; e.g., 10%–30% of the weight of the
material. Hence, the aesthetic properties (softness, stiffness, luster, handle,
drape etc.), physical properties (washability, soil repellence and soil release,
static charge accumulation), tensile properties, creasing, and pilling properties
of textile materials may change.

A brief historical development of FRs through the ages is listed in Table 1.3.

1.19 CLASSIFICATION OF FLAME RETARDANTS

Flame retardants (FRs) are mainly of two types:

1. Additive flame retardants, and
2. Reactive flame retardants.

They can be further separated into several different classes (Van der Veen
et al., 2012):

a. Minerals such as:

• Aluminum hydroxide (ATH),
• Magnesium hydroxide (MDH),
• Huntite and hydromagnesite,
• Various hydrates,
• Red phosphorus, and
• Boron compounds, mostly borates.

TABLE 1.3

Early historical developments of flame retardants (WHO, 1997)
Alum used to reduce the flammability of wood by the Egyptians. About 450 BC

The Romans used a mixture of alum and vinegar on wood. About 200 BC

Mixture of clay and gypsum used to reduce flammability of theater curtains 1638

Mixture of alum, ferrous sulfate, and borax used on wood and textiles by
Jonathan Wyld in Britain

1735

Alum used to reduce flammability of balloons 1783

GayLussac reported a mixture of (NH4)3PO4, NH4Cl and borax to be
effective on linen and hemp

1821

Perkin described a flame retardant treatment for cotton using a mixture of
sodium stannate and ammonium sulfate

1912
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b. Organohalogen compounds. This class includes organochlorines such
as chlorendic acid derivatives chlorinated paraffins and organobromines
such as:

• Decabromodiphenyl ether (decabde),
• Decabromodiphenyl ethane (a replacement for decabde),
• Polymeric brominated compounds such as brominated polystyr-

enes, brominated carbonate oligomers (BCOs), brominated epoxy
oligomers (BEOs),

• Tetrabromophthalic anyhydride,
• Tetrabromobisphenol A (TBBPA), and
• Hexabromocyclododecane (HBCD).

c. Organophosphorus compounds. This class includes organophosphates
such as:

• Triphenyl phosphate (TPP),
• Resorcinol bis(diphenylphosphate) (RDP),
• Bisphenol A diphenyl phosphate (BADP), and
• Tricresyl phosphate (TCP),
• Phosphonates such as dimethyl methylphosphonate

(DMMP), and
• Phosphinates such as aluminium diethyl phosphinate.

d. Halogenated phosphorus compounds:

• Brominated: tris(2,3-dibromopropyl) phosphate (tris), and
• Chlorinated: tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and

tetrakis(2-Chlorethyl)dichloroisopentyl diphosphate (V6) (Weil
and Levchik, 2015).

Most but not all halogenated flame retardants are used in conjunction with
a synergist to enhance their efficiency. Antimony trioxide is widely used, but other
forms of antimony, such as the pentoxide and sodium antimonate are also used.

The mineral flame retardants mainly act as additive flame retardants and
do not become chemically attached to the surrounding system. Most of the
organohalogen and organophosphate compounds also do not react perman-
ently to attach themselves into their surroundings, but further work is now
underway to graft further chemical groups onto these materials to enable
them to become integrated without losing their retardant efficiency. This
will also make these materials nonemissive into the environment. Certain
new nonhalogenated products with these reactive and nonemissive charac-
teristics have been coming onto the market since 2010, because of the
public debate about flame retardant emissions. Some of these new reactive
materials have even received US-EPA approval for their low environmental
impacts.
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1.20 SYNERGISM AND ANTAGONISTIC

Synergism and antagonism are the interactions of two or more substances or
agents to produce a combined effect greater or smaller than the sum of their
separate respective effects.

Synergistic effects are observed in the vapor phase, as well as in condensed-
phase, active FR systems. Their modes of action in the various systems are
different and involve a wide variety of interactions. They involve chemical
interactions between the FR additive and the synergist, between the synergist
and the polymer or between all three: polymer, FR additive and synergist,
between two synergists and the FR additive, and even between two polymers
in a polymer blend. In some cases, the synergist itself is not a flame-retarding
agent and becomes active only in the presence of an FR additive. This is the
case with halogen-based additives and antimony trioxide. In other cases such
as the bromine-phosphorus synergism, both additives are active flame retard-
ants. In certain cases the interaction between the ingredients in a formulation
brings about a decrease in the flame retardancy parameters and is thus antag-
onistic. This is encountered in the case of the application of phosphorus
derivatives together with nitriles (Khanna and Pearce, 1978).

Lewin (1999) stated that the term synergism, in the FR terminology is
a poorly defined term. Strictly speaking, it refers to the combined effect of
two or more additives, which is greater than that predicted on the basis of the
additivity of the effect of the components. The term synergistic effectivity (SE)
(Lewin and Sello, 1975) is meant to serve as a general tool for characterizing
and comparing synergistic systems. It is defined as the ratio of the FR effectiv-
ity (EFF) of the flame retardant additive plus the synergist to the EFF of the
additive without synergist. EFF is defined as the increment in oxygen index
(OI) for 1% of the flame retardant element. The differentiation between the
synergistic systems and catalytic phenomena observed in FR technology is not
straightforward. Some synergistic systems could easily be classified as catalytic
and vice versa. The catalyst is highly effective at a low concentration in the
formulation. The number of FR catalytic systems reported in the literature is,
until now relatively small, but the interest in catalytic approaches appears to
be growing.

1.21 FUTURE TRENDS

The Center of Fire Statistics (CFS) of International Association of Fire and
Rescue Services (CTIF) presents its latest report №23 (CTIF, 2018), contain-
ing fire statistics of 27–57 countries during the years 1993–2016 representing
0.9–3.8 billion inhabitants of the Earth, depending on the year of reporting.
In these countries 2.5–4.5 million fires and 21–62 thousand fire deaths were
reported to fire services annually, depending on the year. The statistics clearly
shows that fire hazards are not being abated in spite of all human efforts. Fire
not only cause loss of human lives and our valuable wealth, but also causes
tremendous air pollution. The biggest health threat from smoke is from fine
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particles. These microscopic particles can get into the eyes and respiratory
system, where they can cause health problems such as burning eyes, runny
nose, and illnesses such as bronchitis. Fine particles also can aggravate chronic
heart and lung diseases. In addition, burning of various materials may gener-
ate toxic gases. To make textile and other substances less prone to burning,
various flame retardant substances are used. In recent years, however, it has
been observed that many of them, especially halogens, are very efficient, but
not environment friendly.

It is a true challenge to find suitable and efficient substitutes at cheaper
prices. The methods of application of flame retardants has also been revolu-
tionized in recent years.
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Šehić A., Tavčer P.F., and Simončič B. (2016b). Flame Retardants and Environmental
Issues, Tekstilec, 59(3), 196–205. DOI: 10.14502/Tekstilec2016.59.196-205.

Sepehr M., Utracki L.A., Zheng X., and Wilkie C.A. (2005). Polystyrenes with
macro-intercalated organoclay. Part I. Compounding and characterization, Polymer,
46, 11557–11568.

Singla P., Mehta R., and Upadhyay S.N. (2012). Clay modification by the use of organic
cations, Green and Sustainable Chemistry, 2, 21–25.

Sinha Ray S. and Masami O. (2003). Polymer/layered silicate nano-composites: A review
from preparation to processing, Progress in Polymer Science, 28, 1539–1641.

Stabkovich S., Dikin D., Dommett G., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner
R.D., Nguyen S.T., and Ruoff R.S. (2006). Graphene-based composite materials,
Nature, 442, 282–286. DOI: 10.1038/nature04969.

Takekoshi T., Fouad F., Mercx F.P.M., and De Moor J.J.M. (1998). US Patent 5 773 502.
Issued to General Electric Company.

Tiwari J.N., Tiwari R.N., and Kim K.S. (2012). Zero-dimensional, one dimensional,
two-dimensional and three-dimensional nanostructured materials for advanced elec-
trochemical energy devices, Progress in Materials Science, 57, 724–803. DOI: 10.1016/
j.pmatsci.2011.08.003.

Turova N., Turevskaya E., Kessler E., and Yanovskaya M. (2002). The Chemistry of
Metal Alkoxides. Kluwer Academic Publishers, Dordrecht.

US-EPA (2008). Tracking Progress on U.S. EPA’s Polybrominated Diphenyl Ethers
(PBDEs), Project Plan: Status Report on Key Activities. Washington, DC, www.epa.
gov/sites/production/files/2015-09/documents/pbdestatus1208.pdf.

US-EPA (2013). Comprehensive environmental assessment applied to: Multiwalled
carbon.

Wang L., He X., and Wilkie C.A. (2010). The Utility of Nanocomposites in Fire
Retardancy, Materials (Basel), Sep; 3(9), 4580–4606, Published online 2010 Sep 3 (), .
DOI: 10.3390/ma3094580.

Wang X., Li Q., Xie J., Jin Z., Wang J., Li Y., Jiang K., and Fan S. (2009). Fabrication of
ultralong and electrically uniform single-walled carbon nanotubes on clean substrates,
Nano Letters, 9(9), 3137–3141. Bibcode:2009NanoL.9.3137W. CiteSeerX
10.1.1.454.2744. DOI: 10.1021/nl901260b. PMID 19650638.

www.epa.gov
www.epa.gov


Wen X., Tian N., Gong J., Chen Q., Qi Y., Liu Z., Liu J., Jiang Z., Chen X., and Tang T.
(2013). Effect of nanosized carbon black on thermal stability and flame retardancy of
polypropylene/carbon nanotubes nanocomposites, Polymers for Advanced Technolo-
gies. DOI: 1002/pat.3172.

Wen X., Wang Y., Gong J., Liu J., Tian N., Wang Y., Jiang Z., Qiu J., and Tang T.
(2012). Thermal and flammability properties of polypropylene/carbon black
nanocomposites, Polymer Degradation and Stability, 97, 793–801.

Wu Q., Zhu W., Liang Z., and Wang B. (2010). Study of fire retardant behavior of
carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced
epoxy composites, Carbon, 48, 1799–1806.

Xinlin R., Yi M., Peichao L., Delong X., Yunyan Y., Yongzhao W., Wang Z., and Pinna-
vaia T.J. (1998). Hybrid organic–inorganic nano-composites: Exfoliation of magadiite
nanolayers in an elastomeric epoxy polymer, Chemistry of Materials, 10, 1820.

Xue B., Peng Y., Song Y., Bai J., Niu M., Yang Y., and Liu X. (2017). Functionalized
multiwalled carbon nanotubes by loading phosphorylated chitosan: Preparation, char-
acterization, and flame-retardant applications of polyethylene terephthalate, High Per-
formance Polymers, 1–12. DOI: 10.1177/0954008317736375.

Yahoo! (2008). Future planes, cars may be made of `buckypaper’. Tech News. 2008-
10–17.accessed on 18.10.2008.

Yano K., Usuki A., Okada A., Kurauchi T., and Kamigaito O. (1993). Synthesis and
properties of polyimide–clay hybrid, Journal of Polymer Science, Part A: Polymer
Chemistry, 3, 2493–2498.

Yin X., Krifa M., and Koo J.H. (2015). Flame-retardant polyamide 6/carbon nanotube
nanofibres: Processing and characterization, Journal of Engineered Fibres and Fabrics,
10(3), 1–11.

Zanettia M., Caminoa G., Thomann R., and Mülhaupt R. (2001). Synthesis and thermal
behaviour of layered silicate–EVA nanocomposites, Polymer 42(10), 4501–4507. DOI:
10.1016/S0032-3861(00)00775-8.

Zhu J., Uhl F.M., Morgan A.B., and Wilkie C.A. (2001). Studies on the mechanism by
which the formation of nanocomposites enhances thermal stability, Chemistry of
Materials, 13, 4649–4654.

Anderson J.J., Camacho V.G., and Kinney R.E. (1974). (a) ‘Cyclic phosphonate esters
and their preparation’, US Patent 3,789,091, 1974; (b) ‘Fire retardant polymers con-
taining thermally stable phosphonate esters’, US Patent 3,849,368, 1974; both patents
assigned to Albright & Wilson Inc.

Anonymous (2019). A brief history of carbon fiber (2019). Brief History of Carbon
Fiber, https://dragonplate.com/a-brief-history-of-carbon-fiber, 25th June, accessed on
12.5.2020.

Apaydin K., Laachachi A., Ball V., Jimenez M., Bourbigot S., Toniazzo V., and Ruch D.
(2014). Intumescent coating of (polyallylamine-polyphosphates) deposited on poly-
amide fabrics via layer-by-layer technique, Polymer Degradation and Stability, 106,
158–164.

Asrar J., Solutia Inc. (1988). Polymer-bound non-halogen fi re resistant compositions,
U.S. Patent, 5 750 603.

Atakan R., Bical A.R., Celebi E., Ozcan G., Soydan N., and Sarac A.S. (2018). Develop-
ment of a flame retardant chemical for finishing of cotton, polyester, and CO/PET
blends, Journal of Industial Textiles, 1–21. DOI: 10.1177/1528083718772303.

Atkinson P.A., Haines P.J., Skinner G.A., and Lever T.J. (2000). Studies of fire-retardant
polyester thermosets using thermal methods, Journal of Thermal Analysis and Calorim-
etry, 59, 395–408.

https://dragonplate.com


Avinc O., Day R., Carr C., and Wildin M. (2012). Effect of combined flame retardant,
liquid repellent and softener finishes on poly(lactic acid) (PLA) fabric performance,
Textile Research Journal, 82(10), 975–984.

Bajaj P., Agrawal A.K., Bajaj P., Agrawal A.K., Dhand A., Kasturia N., and Hansraj
(2000). Flame retardation of acrylic fi bers: An overview, Polymer Reviews, 40, 309–337.

Balakrishnan H., Hassan A., Isitman N.A., Kaynak C. et al. (2012). On the use of mag-
nesium hydroxide towards halogen-free flame retarded polyamide-6/polypropylene
blends, Polym Degrad Stabil, 97, 1447–1457.

Banks M., Ebdon J.R., and Johnson M. (1993). Influence of covalently bound
phosphorus-containing groups on the flammability of poly(vinyl alcohol), poly
(ethylene-co-vinyl alcohol) and low-density polyethylene, Polymer, 34, 4547–4556.

Carosio F., Di Blasio A., Alongi J., and Malucelli G. (2013). Green DNA-based flame
retardant coatings assembled through layer by layer, Polymer, 54(19), 5148–5153.

Besshaposhnikova V.I., Kulikova T.V., et al. (2006). Method for production of
fire-retardant polyester fibrous material, RU Pat. 2,281,992, Aug. 10, 2006; Appl. No.
20050105921.

Borreguero Ana M., Sharma P., Spiteri C., Velencoso M.M., Carmona M.M., Moses J.
E., and Rodríguez J.F. (2013). A novel click-chemistry approach to flame retardant
polyurethanes, Reactive and Functional Polymers, 73(9), 1207–1212.

Bourbigot S. and Fontaine G. (2010). Flame retatdancy of polylactide: An overview,
Polymer Chemistry, 1, 1413–1422.

Carosio F., et al. (2014). Flame retardancy of polyester and polyester–cotton blends trea-
tedwith caseins, Industrial & Engineering Chemistry Research, 53, 3917–3923.

Chang S., Zhou X., and Xing Z. (2017). Computing solubility parametersof phosphor-
ous flame retardants by molecular dynamics andcorrelating their interactionswith poly
(ethylene terephthalate), Textile Research Journal, November 13 1–9. DOI: 10.1177/
0040517517741161.

Chang S.J. and Chang F.C. (1999). Synthesis and characterization of copolyesters con-
taining the phosphorus linking pendent groups, Journal of Applied Polymer Science,
72, 109–122.

Chemical watch (2018). Echa recommends restriction on flame retardants in polyureth-
ane foams, 12 April 2018., https://chemicalwatch.com.

Chen D., Wang Y., Hu X., Wang D., Qu M., and Yang B. (2005). Flame-retardant and
antidripping effects of a novel char-forming flame retardant for the treatment of poly
(ethylene terephthalate) fabrics, Polymer Degradation and Stability, 88, 349–356.

Cheng X.-W., Guan J.P., Tang R.-C., and Kai-Qiang Liu K.-Q. (2016). Improvement of
flame retardancy of poly(lactic acid) nonwoven fabric with a phosphorus-containing
flame retardant, Journal of Industrial Textiles, 46(3), 914–928. DOI: 10.1177/
1528083715606105.

Cheng-Qun W., Feng-Yan G., Jie S., and Zai-Sheng C. (2013). Effects of expandable
graphite and dimethyl methylphosphonate on mechanical, thermal, and flame-retard-
ant properties of flexible polyurethane foams, Journal of Applied Polymer Science, 130,
916. DOI: 10.1002/app.39252.

Cireli A., Kutlu B., and Mutlu M. (2007). Surface modification of polyester and poly-
amide fabrics by low frequency plasma polymerization of acrylic acid, Journal of
Applied Polymer Science, 104(4), 2318–2322.

Coquelle M. (2014). Flame retardancy of polyamide 6 fibers: The use of sulfamate salts,
Ph.D Thesis, Université Lille 1, France.

Crook V.L. (2004). Flame retardant acrylonitrile copolymers, Ph.D. Diss., University of
Sheffield, Sheffield, UK.

https://chemicalwatch.com


Czech-Polak J., Przybyszewski B., Heneczkowski M., Czulak M., and Gude M. (2016).
Effect of environmentally-friendly flame retardants on fire resistance and mechanical prop-
erties of rigid polyurethane foams, Polimery Journal (Industrial Chemistry Research Insti-
tute, Warsaw, Poland), 6(2), 113–116. DOI: 10.14314/polimery.2016.113.

Dittrich B., Wartig K.A., Mülhaupt R., and Schartel B. (2014). Flame-retardancy prop-
erties of intumescent ammonium poly(phosphate) and mineral filler magnesium
hydroxide in combination with graphene, Polymers, 6, 2875–2895.

Ebdon J.R., Hunt B.J., Joseph P., Konkel C.S., Price D., Pyrah K., Hull T.R., Milnes G.J.,
Hill S.B., Lindsay C.I., McCluskey J., and Robinson I. (2000).Thermal degradation and
flame retardance in copolymers of methyl methacrylate with diethyl(methacryloyloxy-
methyl)phosphonate, Polymer Degradation and Stability, 70, 425–436.

Ebnesajjad S. and Ebnesajjad C. (2013). Surface Treatment of Materials for Adhesive
Bonding, 2nd edition. Elsevier.Ec., Europa, EU. (2017).

ECHA (European Chemicals Agency) (2018). https://echa.europa.eu/candidate-list-
table/-/dislist/details/0b0236e181f392bf. accessed on 16.1.2018.

Endo S., Kashihara T., Osako A., Shizuki T., and Ikegami T. (1978). Toyo Boseki
Kabushiki Kaisha, Phosphorus-containing compounds, U.S. Patent: 4 127 590.

Feng Q., et al. (2012). An antidripping flame retardant finishing for polyethylene
terephthalatefabric, Industrial & Engineering Chemistry Research, 51, 14708–14713.

Gao M., Wu W., and Xu Z. (2013). Thermal degradation behaviors and flame retardancy
of epoxy resins withnovel siliconcontaining flame retardant, Journal of Applied Poly-
mer Science, 27, 1842.

Gao M. and Yang S.S. (2010). A novel intumescent flameretardant epoxy resins system,
Journal of Applied Polymer Science, 115(4), 2346–2351.

Garlotta D. (2001). A literature review of poly(lactic acid), Journal of Polymers and the
Environment, 2001(9), 63–84.

Heywood D. (2003). Textile Finishing. SDC, Bradford, UK.
Hirsch C., Striegl B., Mathes S., Adlhart C., Edelmann M., Bono E., Gaan S., Salmeia
K.A., Hoelting L., Krebs A., et al. (2017). Multiparameter toxicity assessment of
novel DOPO derived organo-PFRs, Archives of Toxicology, 91(1), 407–425. DOI:
10.1007/s00204-016-1680-4.

Holme I. and Pater S. (1980). A study of nitrogen–phosphorus synergism in the flame–retard-
ant finishing of resin–treated polyester–cotton blends, Coloration Technology, 96, 224–237.

Horrocks A.R. (1986). Flame-retardant finishing of textiles, Review of Progress in Color-
ation, 16, 62.

Horrocks A.R., Sitpalan A., Zhou C., and Kandola B.K. (2016). Flame retardant poly-
amide fibres: The challenge of minimising flame retardant additive contents with
added nanoclays, Polymers, 8, 288. DOI: 10.3390/polym8080288.

Iler R.K. (1966). Multilayers of colloidal particles, Journal of Colloid and Interface Sci-
ence, 21(6), 569–594.

Isitman N.A., Gunduz H.O., and Kaynak C. (2009). Halogen-free flame retardants that
outperform halogenated counterparts in glass fibre reinforced polyamides, Journal of
Fire Sciences, 28, 87–100.

Jiang W., Jin F.-L., and Park S.-J. (2015). Synthesis of a novel phosphorus-nitrogen-
containingintumescent flame retardant and its application to fabrics. Journal of Indus-
trial and Engineering Chemistry, 27, 40–43.

Kim H.A. and Kim S.J. (2016). Moisture and thermal permeability of the hollow tex-
tured PET imbedded woven fabrics for high emotional garments, Fibers and Polymers,
17, 427. DOI: 10.1007/s12221-016-5942-9.

https://echa.europa.eu
https://echa.europa.eu


Lee F.T., Green J., and Gibilisco R.D. (1984). Recent developments using
phosphorus-containing diol as a reactive combustion modifi er for rigid polyurethane
foams 3, Journal of Fire Sciences, 2, 439–453.

Lewin M., Brozek J., and Martens M.M. (2002). The system polyamide/sulfamate/dipen-
taerythritol: Flame retardancy and chemical reactions, Polymers for Advanced Tech-
nologies, 13(10–12), 1091–1102.

Lewin M., Zhang J., Pearce E., and Gilman J. (2007). Flammability of polyamide 6 using
the sulfamate system and organo-layered silicate, Polymers for Advanced Technologies,
18(9), 737–745.

Li Q.-L., Wang X.-L., Wang D.-Y., Xiong W.-C., and Zhong G.-H. (2010). A novel
organophosphorus flame retardant: Synthesis and durable finishing ofpoly (ethylene
terephthalate)/cotton blends, Journal of Applied Polymer Science, 117, 3066–3074.

Li Y.-C., Liu K., and Xiao R. (2017). Preparation and characterizations of flame retardant
polyamide 66 fiber IOP Conf, Series: Materials Science and Engineering, 213, 012040.

Li Y.-C., Mannen S., Morgan A.B., Chang S., Yang Y.-H., Condon B., and Grunlan J.C.
(2011). Intumescent all-polymer multilayer nanocoating capable of extinguishing
flame on fabric, Adv Mater, 23(34), 3926–3931. DOI: 10.1002/adma.201101871.

Mayer-Gall T., et al. (2015). Permanent flame retardant finishing of textiles by
allyl-functionalizedpolyphosphazenes, ACS Applied Materials & Interfaces, 7, 9349–9363.

Nagelsdiek R., Gobelt B., Omeis J., Freytag A., Greefrath D., and Assignee C., BYK
Chemie GmbH (2014). Adhesion promoter for coatings on different substrate surfaces.
USA: Patent, Patent number is 8778458.

Nguyen T.M.D., Chang S., Condon B., et al. (2012) Development of an environmentally
friendly halogen-free phosphorus-nitrogen bond flame retardant for cotton fabrics,
Polymers for Advanced Technologies, 23, 1555–1563.

Ömeroğulları Z. and Dilek K. (2012). Application of low-frequency oxygen plasma treat-
ment to polyester fabric to reduce the amount of flame retardant agent, Textile
Research Journal, 82(6), 613–621. DOI: 10.1177/0040517511420758.

Price D., Pyrah K., Hull T.R., Milnes G.J., Wooley W.D., Ebdon J.R., Hunt B.J., and
Konkel C.S. (2000). Ignition temperatures and pyrolysis of a fl ame-retardant methyl
methacrylate copolymer containing diethyl(methacryloyloxymethyl)-phosphonate units,
Polymer International, 49, 1164–1168.

Pulina K.I. and Besshaposhnikova V.I. (2013). Fire-retardant features of
wool-containing multi-component cloths for special clothing, Fibre Chemistry, 45(1),
25–30. May (RussianOriginal No. 1, January-February, 2013).

Schindler W.D. and Hauser P.J. (2004). Chemical Finishing of Textiles. Woodhead, Cam-
bridge, England.

Smith R., Georlette P., Finberg I., and Reznick G. (1996), Development of environmen-
tal friendly multifunctional flame retardants for commodity and engineering plastics.
Polymer Degradation and Stability, 54(2–3), 167–173.

Smith W.F. and Hashemi J. (2006). Foundations of Materials Science and Engineering.
4th.McGraw-HillMcGraw-Hill Book Company, New York, pp. 373–378.

Sypaseuth F.D., Gallo E., Çiftci S., and Schartel B. (2017). Polylactic acid biocomposites:
Approaches to a completely green flame retarded polymer, e-Polymers, 17(6), 449–462.
DOI: 10.1515/epoly-2017-0024.

Taylor G.J. (1981). Process for producing carbon-carbon fibre composites suitable for use
as aircraft brake discs. Patent application no. 06/053535, USA.

Tsafack M.J. and Levalois-Grützmacher J. (2006). Plasma-induced graftpolymerization
of flame retardant monomers onto PAN fabrics, Surface and Coatings Technology,
200, 3503–3510.



Uddin F. (2016). Flame-retardant fibrous materials in an aircraft, Journal of Industrial
Textiles, 45(5), 1128–1169. DOI: 10.1177/1528083714540700.

U.S. EPA (2005). Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum,
Washington, DC; EPA/630/P-03/001F. Federal Register 70(66), 17765–17817, www.epa.
gov/raf.

Wang C.S. and Lee M.C. (2000). Synthesis and properties of epoxy resins containing
2-(6-oxid-6H-dibenz(c,e) (1,2) oxaphosphorin-6-yl) 1,4-benzenediol (II), Polymer, 41,
3631–3638.

Weil E.D. and Levchik S.V. (2008). Flame retardants in commercial use or development
for textiles, Journal of Fire Sciences, 26, 243–281.

Whelan T. (1994). Polymer Technology Dictionary. Chapman & Hall, London.
Yeh K.-N. and Birky M.M. (1973). Calorimetric study of flammable fabrics. II. Analysis
of flameretardant-treated cotton. Journal of Applied Polymer Science, 17(1), 255.

Yoo-Hun K., Jinho J., Song K.-G., Lee E.-S., and Ko S.-W. (2001). Durable fl

ame-retardant treatment of polyethylene terephthalate (PET) and PET/cotton blend
using dichlorotribromophenyl phosphate as new flame retardant for polyester, Journal
of Applied Polymer Science, 81, 793–799.

Yoshioka-Tarver M., et al. (2012). Enhanced flame retardant property of fiber reactive
halogenfreeorganophosphonate, Industrial & Engineering Chemistry Research, 51,
11031–11037.

Younis A.A. (2012). Protection of aluminum alloy (AA7075) from corrosion by sol-gel
technique. PhD Thesis, Chemnitz University of Technology.

Younis A.A. (2017). Protection of polyester fabric from ignition by a new chemical modi-
fication method, Journal of Industrial Textiles, 47(3), 363–376. DOI: 10.1177/
1528083716648761.

Alcock R.E. and Busby J. (April 2006). Risk migration and scientific advance: The case
of flame-retardant compounds. Risk Analysis, 26(2), 369–381. doi:10.1111/j.1539-
6924.2006.00739.x. PMID 16573627).

Alongi J., Carletto R.A., Di Blasio A., Cuttica F., Carosio F., Bosco F., and Malucelli G.
(2013). Update on Flame Retardant textiles: State of the art, Environmental Issues and
Innovative Solutions, Shawbury, Smithers Rapra, 2013, 1–348.

Alongi J., Bosco F., Carosio F., Di Blasio A., and Malucelli G. (2014). A new era for
flame retardant materials?, Materials Today, 17(4), May, 152–153.

Alongi J., Carletto R.A., Di Blasio A., Cuttica F., Carosio F., Bosco F., and Malucelli G.
(2013b). Intrinsic intumescent-like flame retardant properties of DNA-treated cotton
fabrics, Carbohydrate Polymers, 96, 296–304.

Alongi J. and Malucelli G. (2015). Thermal degradation of cellulose and cellulosic sub-
strates, in: A. Tiwari and B. Raj, Eds., Reactions and Mechanisms in Thermal Analysis
of Advanced Materials. JohnWiley & Sons, Hoboken, NJ, USA, Vol 14, pp. 301–332.

Anonymous (2016). Flame retardants: the case for policy change, environment & human
health, Tekstilec, 59(3), 196–205. www.ehhi.org/reports/flame/EHHI_FlameRetar
dants_1113.pdf, accessed on 1.7.2016.

Braun U., Schartel B., Fichera M.A., and Jager C. (2007). Polymer Degradation and Sta-
bility, 92, 1528–1545.

Buser H.R. (1987). Brominated and brominated/chlorinated dibenzodioxins and diben-
zofurans: Potential environmental contaminants, Chemosphere, 16(8–9), 1873–1876.

Carosio F., Di Blasio A., Alongi J., and Malucelli G. (2013). Green DNA-based flame
retardant coatings assembled through Layer by Layer, Polymer, 54, 5148–5153.

www.epa.gov
www.epa.gov
www.ehhi.org
www.ehhi.org


Carosio F., Di Blasio A., Cuttica F., Alongi J., and Malucelli G. (2014). Flame retard-
ancy of polyester and polyester-cotton blends treated with caseins, Industrial & Engin-
eering Chemistry Research, 53, 3917–3923.

Cheng X.-W., Guan J.P., Tang R.-C., and Kai-Qiang Liu K.-Q. (2016). Improvement of
flame retardancy of poly(lactic acid) nonwoven fabric with a phosphorus-containing
flame retardant, Journal of Industrial Textiles, 46(3), 914–928. DOI: 10.1177/
1528083715606105.

Costes L., Laoutid F., Dumazert L., Lopez-cuesta J.M., Brohez S., Delvosalle C., and
Dubois P. (2015). Metallic phytates as efficient bio-based phosphorous flame retardant
additives for poly (lactic acid), Polymer Degradation and Stability, 119, 217–227.

Drinker C.K., Warren M.F., and Bennet G.A. (1937). The problem of possible systemic
effects from certain chlorinated hydrocarbons, Journal of Industrial Hygiene and Toxi-
cology, 19(7), 283–311.

D’Silva K., Fernandes A., and Rose M. (2004). Brominated organic micropollutants –
Igniting the flame retardant issue, Critical Reviews in Environmental Science and Tech-
nology, 34, 141–207.

EHP (Environmental Health Perspectives). (1978). Final report of the subcommittee on
health effects of PCBs and PBBs, 24, 133–198.

Elbasuney S. (2015). Surface engineering of layered double hydroxide (LDH) nanoparti-
cles for polymer flame retardancy, Powder Technology, 277, 63–73. DOI: 10.1016/j.
powtec.2015.02.044.

EPA (US Environmental Protection Agency) (1984). Health and Environmental Effects
Profile for Brominated Diphenyl Ethers. Environ Criteria and Assessment Office, Cincin-
nati, USA.

EU. (1999). Draft Risk assessment of diphenyl ether, pentabromo derivative (pentabromo-
diphenyl ether, of diphenyl ether, octabromo derivative, of bis(pentabromophenyl)ether
(decabromodiphenyl ether), https://echa.europa.eu/documents/10162/da9bc4c4-8e5b-
4562-964c-5b4cf59d2432, accessed on 12.5.2020.

European Commission (2008).Textiles Background Product Report, Brussels, European
Commission, DG Environment-G2, B-1049.

European Parliament and Council (2000). Directive 2000/60/EC of the European Parlia-
mentand of the Council of 23 October 2000 establishing a framework for community
action in the field of water policy. OJ. L 327, 92.

Federal Register (1996). Proposed Guidelines for Carcinogen Risk Assessment, Federal
Register, 61(79), 17960–18011, 23 April, https://www.govinfo.gov/content/pkg/FR-
1996-04-23/html/96-9711.htm, accessed on 12.5.2020.

Gaan S., Salimova V., Rupper P., Ritter A., and Schmid H. (2011). Chapter 5 Flame
Retardant Functional Textiles in Functional Textiles for Improved Performance. Protec-
tion and Health, 1st Edition, N Pan G. Sun, Woodhead, UK.

Gu L., Ge Z., Huang M., and Luo Y. (2015). Halogen-free flame-retardant waterborne
polyurethane with a novel cyclic structure of phosphorus-nitrogen synergistic flame
retardant, Journal of Applied Polymer Science. DOI: 10.1002/APP.41288.

Hardy M.L., Banasik M., and Stedeford T. (2009). Toxicology and human health assess-
ment of decabromodiphenyl ether, Critical Reviews in Toxicology, 39, 1–44.

Hellström T. (2000) Brominated Flame Retardants (PBDE and PBB) in Sludge – a Prob-
lem?, The Swedish Water and Wastewater Association Report No M 113 (eng), April.

Hirsch C., Striegl B., Mathes S., Adlhart C., Edelmann M., Bono E., Gaan S., Salmeia K.
A., Hoelting L., Krebs A., et al. (2016). Multiparameter toxicity assessment of novel
DOPO derived organo-PFRs. Archives of Toxicology, 90, 1–19. DOI: 10.1007/s00204-
016-1680-4.

https://echa.europa.eu
https://echa.europa.eu
https://www.govinfo.gov
https://www.govinfo.gov


Horrocks A.R. (1997). Environmental consequences of using Flame-retardant textiles –
Asimple life cycle analytical model, Fire and Materials, 21(5), 229–234. doi:10.1002/
(SICI)1099-1018(199709/10)21:5229::AID-FAM6143.0.CO;2-U.

Horrocks A.R. (2001). Textiles. Fire Retardant Materials. A.R. Horrocks and D. Price.
Woodhead Publishing, Cambridge, pp. 128–181.

Horrocks A.R. (2003). Flame retardant finishes and finishing, in: D. Heywood, Ed., Tex-
tile Finishing, Volume 2. Society of Dyers and Colourists, Bradford, UK, pp. 214–250.

Horrocks A.R. (2008) Textiles. Advances in Fire Retardant Materials. A.R. Horrocks
and D. Price, Eds., Woodhead Publishing, Cambridge, pp. 188–233.

Horrocks A.R. (2011). Flame retardant challenges for textiles and fibres: New chemistry
versusinnovatory solutions, Polymer Degradation and Stability, 96, 377–392.

Horrocks R.A. (2013). Flame retardant and environmental issues, in: J. Alongi, A.R.
Horrocks, F. Carosio, and G. Malucelli, Eds., Update on % Flame Retardant Textiles:
State of the Art, Environmental Issues and Innovative Solutions. Smithers Rapra Tech-
nology Ltd, Shawbury, pp. 207–239.

IARC (International Agency for Research on Cancer) (1990). Some Flame Retardants
and Textile Chemicals, and Exposures in the Textile Manufacturing Industry. IARC
Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 48, ISBN-
13 (Print Book), 978-92-832-1248-5, ISBN-13 (PDF,978-92-832-1248-5.

International Antimony Association (2009). Downstream user exposure scenarios being
prepared for REACH, Brussels, International Antimony Association VZW. Available
at: www.antimony.be/newsletter/docs/i2a/i2a-newsletter-december-2009.pdf,accessed on
18.2.2020.

Isbasara C. and Hacaloglu J. (2012). Investigation of thermal degradation characteristics
of polyamide-6 containing melamine or melamine cyanurate via direct pyrolysis mass
spectrometry, Journal of Analytical and Applied Pyrolysis, 98, 221–230. DOI: 10.1016/
j.jaap.2012.09.002.

Jensen S. (1966). Report of a new chemical hazard, New Scientist, 32, 612.
Joseph P. and Ebdon J.R. (2010). Phosphorus-Based Flame Retardants in Fire Retardancy
of Polymeric Materials, 2nd edition, C.A. Wilkie and A.B. Morgan, CRC Press, USA.

Jurgen T.H. (1998). Overview of flame retardants, fire & environment protection service,
Chemica Oggi, 16, 1–19.

Kemmlein S., Herzke D. et al. (2009). Brominated flame retardants in the European
chemicals policy of REACH – Regulation and determination in materials, Journal of
Chromatography A, 1216, 320–333.

Laufer G., Kirkland C., Morgan A.B., and Grunlan J.C. (2012). Intumescent multilayer
nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton, Bioma-
cromolecules, 13, 2843–2848.

Liu Y., Liu L., Yuan M., and Guo R. (2013). Preparation and characterization of
casein-stabilized gold nanoparticles for catalytic applications, Colloids and Surfaces A,
417, 18–25.

Lomakin S.M., Sakharov A.M., Sakharov P.A., and Zaikov G.E. (2012). Environmen-
tally friendly flame retardants based on renewable raw materials, International Polymer
Science and Technology, 39(7).

Malucelli G. (2016). Layer-by-Layer nanostructured assemblies for the fire protection of
fabrics, Materials Letters, 166, 339–342.

Malucelli G., Bosco F., Alongi J., Carosio F., Di Blasio A., Mollea C., Cuttica F., and
Casale A. (2014). Biomacromolecules as novel green flame retardant systems for tex-
tiles: An overview, RSC Advances, 4, 46024–46039.

www.antimony.be


Morgan A.B. (2017). Polymer Flame Retardant Chemistry, FR Chemistry, 09/30/09,
http://www.nist.gov/el/fire_research/upload/2-Morgan.pdf, accessed on 12.11.17.

Nicola (2015). Use and regulation of flame retardants in textiles, AATCC Review, 15(6).
NTP (1985). NTP technical report on the toxicology and carcinogenesis studies of
dekabromodiphenyl oxide in F344/N rats and B6C3F1 mice (feed studies). National
Toxicology Program, NTP-TR-309, NIH-85-2565.

Reemtsma O., Quintana J.B.-N., Rodil R., Garci´A-López M.-C., and Rodriguez I.,
(2008). Organophosphorus flame retardants and plasticizers in water and air I.
Occuraence and fate. Trends in Analytical Chemistry, 27(9), 727–737.

Salmeia K.A., Hoelting L., Krebs A., et al. (2016). Multiparameter toxicity assessment
of novel DOPO derived organo-PFRs. Archives of Toxicology, 1–19. DOI: 10.1007/
s00204-016-1680-4.

Schecter A., Shah N. et al. (2009). PBDEs in US and German clothes dryer lint: A potential
source of indoor contamination and exposure, Chemosphere, 75, 623–628.

Schindler W.D. and Hauser P.J. (2004). Chemical Finishing of Textiles. Woodhead, Cam-
bridge, England.

Sciencedaily (2018). www.sciencedaily.com/releases/2018/04/180404093947.h, accessed on
10.5.18. (Source: Columbia University’s Mailman School of Public Health, Date:
April 4, 2018).
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